These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 16234173)
1. Structure-activity relationships for reactivity of carbonyl-containing compounds with glutathione. Schultz TW; Yarbrough JW; Johnson EL SAR QSAR Environ Res; 2005 Aug; 16(4):313-22. PubMed ID: 16234173 [TBL] [Abstract][Full Text] [Related]
2. Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds. Schultz TW; Yarbrough JW SAR QSAR Environ Res; 2004 Apr; 15(2):139-46. PubMed ID: 15199949 [TBL] [Abstract][Full Text] [Related]
3. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Schultz TW; Netzeva TI; Roberts DW; Cronin MT Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140 [TBL] [Abstract][Full Text] [Related]
4. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds. Yarbrough JW; Schultz TW Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700 [TBL] [Abstract][Full Text] [Related]
5. Structure-activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds. Schultz TW; Ralston KE; Roberts DW; Veith GD; Aptula AO SAR QSAR Environ Res; 2007; 18(1-2):21-9. PubMed ID: 17365956 [TBL] [Abstract][Full Text] [Related]
6. Intracellular Metabolism of α,β-Unsaturated Carbonyl Compounds, Acrolein, Crotonaldehyde and Methyl Vinyl Ketone, Active Toxicants in Cigarette Smoke: Participation of Glutathione Conjugation Ability and Aldehyde-Ketone Sensitive Reductase Activity. Horiyama S; Hatai M; Takahashi Y; Date S; Masujima T; Honda C; Ichikawa A; Yoshikawa N; Nakamura K; Kunitomo M; Takayama M Chem Pharm Bull (Tokyo); 2016; 64(6):585-93. PubMed ID: 27250793 [TBL] [Abstract][Full Text] [Related]
7. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters. Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215 [TBL] [Abstract][Full Text] [Related]
8. Verification of the structural alerts for Michael acceptors. Schultz TW; Yarbrough JW; Hunter RS; Aptula AO Chem Res Toxicol; 2007 Sep; 20(9):1359-63. PubMed ID: 17672510 [TBL] [Abstract][Full Text] [Related]
9. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes. Furuhama A; Aoki Y; Shiraishi H SAR QSAR Environ Res; 2012 Jan; 23(1-2):169-84. PubMed ID: 22150015 [TBL] [Abstract][Full Text] [Related]
10. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations. Mulliner D; Wondrousch D; Schüürmann G Org Biomol Chem; 2011 Dec; 9(24):8400-12. PubMed ID: 22048735 [TBL] [Abstract][Full Text] [Related]
11. Identification of reactive toxicants: structure-activity relationships for amides. Schultz TW; Yarbrough JW; Koss SK Cell Biol Toxicol; 2006 Sep; 22(5):339-49. PubMed ID: 16845611 [TBL] [Abstract][Full Text] [Related]
12. Assessing the structure-activity relationships of fluorotelomer unsaturated acids and aldehydes with glutathione. Reactivity of glutathione with fluorotelomer unsaturated acids and aldehydes. Rand AA; Mabury SA Cell Biol Toxicol; 2012 Apr; 28(2):115-24. PubMed ID: 22252736 [TBL] [Abstract][Full Text] [Related]
13. Conjugated dienes as prohaptens in contact allergy: in vivo and in vitro studies of structure-activity relationships, sensitizing capacity, and metabolic activation. Bergström MA; Luthman K; Nilsson JL; Karlberg AT Chem Res Toxicol; 2006 Jun; 19(6):760-9. PubMed ID: 16780354 [TBL] [Abstract][Full Text] [Related]
14. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Roberts DW; Schultz TW; Wolf EM; Aptula AO Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804 [TBL] [Abstract][Full Text] [Related]
15. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis. Schultz TW; Sparfkin CL; Aptula AO SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756 [TBL] [Abstract][Full Text] [Related]
16. Examination of Michael addition reactivity towards glutathione by transition-state calculations. Schwöbel JA; Madden JC; Cronin MT SAR QSAR Environ Res; 2010 Oct; 21(7-8):693-710. PubMed ID: 21120757 [TBL] [Abstract][Full Text] [Related]
17. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958 [TBL] [Abstract][Full Text] [Related]
18. Mutagenic properties of allylic and alpha, beta-unsaturated compounds: consideration of alkylating mechanisms. Eder E; Henschler D; Neudecker T Xenobiotica; 1982 Dec; 12(12):831-48. PubMed ID: 6763406 [TBL] [Abstract][Full Text] [Related]
19. Structure-activity relationships of alpha, beta-unsaturated ketones as assessed by their cytotoxicity against oral tumor cells. Nakayachi T; Yasumoto E; Nakano K; Morshed SR; Hashimoto K; Kikuchi H; Nishikawa H; Kawase M; Sakagami H Anticancer Res; 2004; 24(2B):737-42. PubMed ID: 15161020 [TBL] [Abstract][Full Text] [Related]
20. Catalytic [4+1] cycloaddition of alpha,beta-unsaturated carbonyl compounds with isocyanides. Oshita M; Yamashita K; Tobisu M; Chatani N J Am Chem Soc; 2005 Jan; 127(2):761-6. PubMed ID: 15643902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]