These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16234176)

  • 1. QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor.
    Zhao CY; Zhang RS; Zhang HX; Xue CX; Liu HX; Liu MC; Hu ZD; Fan BT
    SAR QSAR Environ Res; 2005 Aug; 16(4):349-67. PubMed ID: 16234176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
    Chen Y; Cheng F; Sun L; Li W; Liu G; Tang Y
    Ecotoxicol Environ Saf; 2014 Dec; 110():280-7. PubMed ID: 25282305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor.
    Hong H; Fang H; Xie Q; Perkins R; Sheehan DM; Tong W
    SAR QSAR Environ Res; 2003; 14(5-6):373-88. PubMed ID: 14758981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships.
    Yang X; Liu H; Yang Q; Liu J; Chen J; Shi L
    Chemosphere; 2016 Nov; 163():373-381. PubMed ID: 27561732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor.
    Fang H; Tong W; Branham WS; Moland CL; Dial SL; Hong H; Xie Q; Perkins R; Owens W; Sheehan DM
    Chem Res Toxicol; 2003 Oct; 16(10):1338-58. PubMed ID: 14565775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new hybrid system of QSAR models for predicting bioconcentration factors (BCF).
    Zhao C; Boriani E; Chana A; Roncaglioni A; Benfenati E
    Chemosphere; 2008 Dec; 73(11):1701-7. PubMed ID: 18954891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of support vector machine (SVM) for prediction toxic activity of different data sets.
    Zhao CY; Zhang HX; Zhang XY; Liu MC; Hu ZD; Fan BT
    Toxicology; 2006 Jan; 217(2-3):105-19. PubMed ID: 16213080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decision trees versus support vector machine for classification of androgen receptor ligands.
    Panaye A; Doucet JP; Devillers J; Marchand-Geneste N; Porcher JM
    SAR QSAR Environ Res; 2008; 19(1-2):129-51. PubMed ID: 18311640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and virtual screening of androgen receptor antagonists.
    Li J; Gramatica P
    J Chem Inf Model; 2010 May; 50(5):861-74. PubMed ID: 20405856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].
    Qi J; Niu JF; Wang LL
    Huan Jing Ke Xue; 2008 Jan; 29(1):212-8. PubMed ID: 18441943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the Toxicity of Different Substituted Aromatic Compounds to the Aquatic Ciliate
    Luan F; Wang T; Tang L; Zhang S; Cordeiro MNDS
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29695132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational prediction models for assessing endocrine disrupting potential of chemicals.
    Sakkiah S; Guo W; Pan B; Kusko R; Tong W; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):192-218. PubMed ID: 30633647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of induced fit on ligand binding to the androgen receptor: a multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals.
    Lill MA; Winiger F; Vedani A; Ernst B
    J Med Chem; 2005 Sep; 48(18):5666-74. PubMed ID: 16134935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.