BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16234856)

  • 1. Glucose is a key metabolic regulator of osteoclasts; glucose stimulated increases in ATP/ADP ratio and calmodulin kinase II activity.
    Larsen KI; Falany M; Wang W; Williams JP
    Biochem Cell Biol; 2005 Oct; 83(5):667-73. PubMed ID: 16234856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanisms of Ca++/calmodulin dependent protein kinases.
    Huynh QK; Pagratis N
    Arch Biochem Biophys; 2011 Feb; 506(2):130-6. PubMed ID: 21081101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion to Ca(2+)-independent form of Ca2+/calmodulin protein kinase II in rat pancreatic acini.
    Duan RD; Guo YJ; Williams JA
    Biochem Biophys Res Commun; 1994 Feb; 199(1):368-73. PubMed ID: 8123036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions.
    Fridlyand LE; Ma L; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E839-48. PubMed ID: 15985450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid turnover of phosphatidylinositol-4,5-bisphosphate in insulin-secreting cells mediated by Ca2+ and the ATP-to-ADP ratio.
    Thore S; Wuttke A; Tengholm A
    Diabetes; 2007 Mar; 56(3):818-26. PubMed ID: 17327453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of opioids on Ca2+/calmodulin dependent protein kinase signal pathway in NG108-15 cells].
    Guo QM; Liu JS
    Yao Xue Xue Bao; 2001 Sep; 36(9):652-6. PubMed ID: 12580100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelial growth factor stimulates a novel calcium-signaling pathway in vascular smooth muscle cells.
    Chandra A; Angle N
    Surgery; 2005 Oct; 138(4):780-7. PubMed ID: 16269309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation.
    Witczak CA; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2007 May; 56(5):1403-9. PubMed ID: 17287469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential calreticulin expression affects focal contacts via the calmodulin/CaMK II pathway.
    Szabo E; Papp S; Opas M
    J Cell Physiol; 2007 Oct; 213(1):269-77. PubMed ID: 17516550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative-induced calcium mobilization is dependent on annexin VI release from lipid rafts.
    Cuschieri J; Bulger E; Garcia I; Maier RV
    Surgery; 2005 Aug; 138(2):158-64. PubMed ID: 16153422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation.
    Katz S; Boland R; Santillán G
    Int J Biochem Cell Biol; 2006; 38(12):2082-91. PubMed ID: 16893669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the T286A-mutant alphaCaMKII interactions with Ca2+/calmodulin and ATP.
    Tzortzopoulos A; Török K
    Biochemistry; 2004 Jun; 43(21):6404-14. PubMed ID: 15157074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniaxial cyclic stretch-stimulated glucose transport is mediated by a ca-dependent mechanism in cultured skeletal muscle cells.
    Iwata M; Hayakawa K; Murakami T; Naruse K; Kawakami K; Inoue-Miyazu M; Yuge L; Suzuki S
    Pathobiology; 2007; 74(3):159-68. PubMed ID: 17643061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells.
    Liu Y; Templeton DM
    FEBS Lett; 2007 Apr; 581(7):1481-6. PubMed ID: 17367784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-dependent regulation of osteoclast H(+)-ATPase expression: potential role of p38 MAP-kinase.
    Larsen KI; Falany ML; Ponomareva LV; Wang W; Williams JP
    J Cell Biochem; 2002; 87(1):75-84. PubMed ID: 12210724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminin activates CaMK-II to stabilize nascent embryonic axons.
    Easley CA; Faison MO; Kirsch TL; Lee JA; Seward ME; Tombes RM
    Brain Res; 2006 May; 1092(1):59-68. PubMed ID: 16690036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway.
    Sato K; Suematsu A; Nakashima T; Takemoto-Kimura S; Aoki K; Morishita Y; Asahara H; Ohya K; Yamaguchi A; Takai T; Kodama T; Chatila TA; Bito H; Takayanagi H
    Nat Med; 2006 Dec; 12(12):1410-6. PubMed ID: 17128269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of tamoxifen-like compounds on osteoclastic bone degradation, H(+)-ATPase activity, calmodulin-dependent cyclic nucleotide phosphodiesterase activity, and calmodulin binding.
    Williams JP; McDonald JM; McKenna MA; Jordan SE; Radding W; Blair HC
    J Cell Biochem; 1997 Sep; 66(3):358-69. PubMed ID: 9257192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The major calmodulin-binding protein in rabbit parietal cells is Ca2+/calmodulin-dependent protein kinase II.
    Funasaka M; Fox LM; Tang LH; Modlin IM; Goldenring JR
    Biochem Int; 1992 Sep; 27(6):1101-9. PubMed ID: 1332720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.