These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 16234917)
1. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Vincent KA; Cracknell JA; Parkin A; Armstrong FA Dalton Trans; 2005 Nov; (21):3397-403. PubMed ID: 16234917 [TBL] [Abstract][Full Text] [Related]
2. Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Armstrong FA; Belsey NA; Cracknell JA; Goldet G; Parkin A; Reisner E; Vincent KA; Wait AF Chem Soc Rev; 2009 Jan; 38(1):36-51. PubMed ID: 19088963 [TBL] [Abstract][Full Text] [Related]
3. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Shima S; Pilak O; Vogt S; Schick M; Stagni MS; Meyer-Klaucke W; Warkentin E; Thauer RK; Ermler U Science; 2008 Jul; 321(5888):572-5. PubMed ID: 18653896 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide. Lamle SE; Albracht SP; Armstrong FA J Am Chem Soc; 2005 May; 127(18):6595-604. PubMed ID: 15869280 [TBL] [Abstract][Full Text] [Related]
5. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487 [TBL] [Abstract][Full Text] [Related]
6. Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. De Lacey AL; Fernandez VM; Rousset M; Cammack R Chem Rev; 2007 Oct; 107(10):4304-30. PubMed ID: 17715982 [No Abstract] [Full Text] [Related]
7. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy. Burgdorf T; Löscher S; Liebisch P; Van der Linden E; Galander M; Lendzian F; Meyer-Klaucke W; Albracht SP; Friedrich B; Dau H; Haumann M J Am Chem Soc; 2005 Jan; 127(2):576-92. PubMed ID: 15643882 [TBL] [Abstract][Full Text] [Related]
8. The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Stripp S; Sanganas O; Happe T; Haumann M Biochemistry; 2009 Jun; 48(22):5042-9. PubMed ID: 19397274 [TBL] [Abstract][Full Text] [Related]
9. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Armstrong FA; Albracht SP Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):937-54; discussion 1035-40. PubMed ID: 15991402 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts. Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265 [TBL] [Abstract][Full Text] [Related]
11. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Lenz O; Ludwig M; Schubert T; Bürstel I; Ganskow S; Goris T; Schwarze A; Friedrich B Chemphyschem; 2010 Apr; 11(6):1107-19. PubMed ID: 20186906 [TBL] [Abstract][Full Text] [Related]
12. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
13. Hydrogenases: active site puzzles and progress. Armstrong FA Curr Opin Chem Biol; 2004 Apr; 8(2):133-40. PubMed ID: 15062773 [TBL] [Abstract][Full Text] [Related]
14. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related]
15. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z; Wang M; Li P; Dong W; Wang F; Sun L Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194 [TBL] [Abstract][Full Text] [Related]
16. IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. De Lacey AL; Stadler C; Fernandez VM; Hatchikian EC; Fan HJ; Li S; Hall MB J Biol Inorg Chem; 2002 Mar; 7(3):318-26. PubMed ID: 11935356 [TBL] [Abstract][Full Text] [Related]
17. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Lubitz W; Reijerse E; van Gastel M Chem Rev; 2007 Oct; 107(10):4331-65. PubMed ID: 17845059 [No Abstract] [Full Text] [Related]
18. Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces. Millo D; Pandelia ME; Utesch T; Wisitruangsakul N; Mroginski MA; Lubitz W; Hildebrandt P; Zebger I J Phys Chem B; 2009 Nov; 113(46):15344-51. PubMed ID: 19845323 [TBL] [Abstract][Full Text] [Related]
19. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO. Ash PA; Liu J; Coutard N; Heidary N; Horch M; Gudim I; Simler T; Zebger I; Lenz O; Vincent KA J Phys Chem B; 2015 Oct; 119(43):13807-15. PubMed ID: 26115011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]