These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16234941)
1. Reductive activation of nitrate reductases. Field SJ; Thornton NP; Anderson LJ; Gates AJ; Reilly A; Jepson BJ; Richardson DJ; George SJ; Cheesman MR; Butt JN Dalton Trans; 2005 Nov; (21):3580-6. PubMed ID: 16234941 [TBL] [Abstract][Full Text] [Related]
2. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Anderson LJ; Richardson DJ; Butt JN Biochemistry; 2001 Sep; 40(38):11294-307. PubMed ID: 11560477 [TBL] [Abstract][Full Text] [Related]
3. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ; Richardson DJ; Butt JN Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-catalysed nitrate reduction-themes and variations as revealed by protein film voltammetry. Butt JN; Anderson LJ; Rubio LM; Richardson DJ; Flores E; Herrero A Bioelectrochemistry; 2002 May; 56(1-2):17-8. PubMed ID: 12009435 [TBL] [Abstract][Full Text] [Related]
5. Tuning a nitrate reductase for function. The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties. Jepson BJ; Anderson LJ; Rubio LM; Taylor CJ; Butler CS; Flores E; Herrero A; Butt JN; Richardson DJ J Biol Chem; 2004 Jul; 279(31):32212-8. PubMed ID: 15166246 [TBL] [Abstract][Full Text] [Related]
6. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273 [TBL] [Abstract][Full Text] [Related]
7. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Elliott SJ; Hoke KR; Heffron K; Palak M; Rothery RA; Weiner JH; Armstrong FA Biochemistry; 2004 Jan; 43(3):799-807. PubMed ID: 14730985 [TBL] [Abstract][Full Text] [Related]
8. In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. Frangioni B; Arnoux P; Sabaty M; Pignol D; Bertrand P; Guigliarelli B; Léger C J Am Chem Soc; 2004 Feb; 126(5):1328-9. PubMed ID: 14759176 [TBL] [Abstract][Full Text] [Related]
9. Resolving complexity in the interactions of redox enzymes and their inhibitors: contrasting mechanisms for the inhibition of a cytochrome c nitrite reductase revealed by protein film voltammetry. Gwyer JD; Richardson DJ; Butt JN Biochemistry; 2004 Nov; 43(47):15086-94. PubMed ID: 15554716 [TBL] [Abstract][Full Text] [Related]
10. Evidence for an EPR-detectable semiquinone intermediate stabilized in the membrane-bound subunit NarI of nitrate reductase A (NarGHI) from Escherichia coli. Grimaldi S; Lanciano P; Bertrand P; Blasco F; Guigliarelli B Biochemistry; 2005 Feb; 44(4):1300-8. PubMed ID: 15667223 [TBL] [Abstract][Full Text] [Related]
11. Diode or tunnel-diode characteristics? Resolving the catalytic consequences of proton coupled electron transfer in a multi-centered oxidoreductase. Gwyer JD; Richardson DJ; Butt JN J Am Chem Soc; 2005 Nov; 127(43):14964-5. PubMed ID: 16248601 [TBL] [Abstract][Full Text] [Related]
12. Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus. Quentmeier A; Hellwig P; Bardischewsky F; Wichmann R; Friedrich CG Biochemistry; 2004 Nov; 43(46):14696-703. PubMed ID: 15544340 [TBL] [Abstract][Full Text] [Related]
13. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Butler CS; Charnock JM; Garner CD; Thomson AJ; Ferguson SJ; Berks BC; Richardson DJ Biochem J; 2000 Dec; 352 Pt 3(Pt 3):859-64. PubMed ID: 11104696 [TBL] [Abstract][Full Text] [Related]
14. Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus. Echalier A; Goodhew CF; Pettigrew GW; Fülöp V Structure; 2006 Jan; 14(1):107-17. PubMed ID: 16407070 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Jepson BJ; Marietou A; Mohan S; Cole JA; Butler CS; Richardson DJ Biochem Soc Trans; 2006 Feb; 34(Pt 1):122-6. PubMed ID: 16417499 [TBL] [Abstract][Full Text] [Related]
16. Redox-related activation and deactivation of E. coli nitrate reductase: kinetic and spectroscopic studies. Bennett B; Bray RC Biochem Soc Trans; 1994 Feb; 22(1):78S. PubMed ID: 8206310 [No Abstract] [Full Text] [Related]
17. A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase. Almeida MG; Silveira CM; Guigliarelli B; Bertrand P; Moura JJ; Moura I; Léger C FEBS Lett; 2007 Jan; 581(2):284-8. PubMed ID: 17207484 [TBL] [Abstract][Full Text] [Related]
18. Effect of periplasmic nitrate reductase on diauxic lag of Paracoccus pantotrophus. Durvasula K; Jantama K; Fischer K; Vega A; Koopman B; Svoronos SA Biotechnol Prog; 2009; 25(4):973-9. PubMed ID: 19399903 [TBL] [Abstract][Full Text] [Related]
19. Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover. Anderson LJ; Richardson DJ; Butt JN Faraday Discuss; 2000; (116):155-69; discussion 171-90. PubMed ID: 11197477 [TBL] [Abstract][Full Text] [Related]