These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 16234946)
21. Particle separation in microfluidics using a switching ultrasonic field. Liu Y; Lim KM Lab Chip; 2011 Sep; 11(18):3167-73. PubMed ID: 21826293 [TBL] [Abstract][Full Text] [Related]
22. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Yang S; Kim JY; Lee SJ; Lee SS; Kim JM Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348 [TBL] [Abstract][Full Text] [Related]
23. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
24. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
25. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection. Holmes D; Morgan H; Green NG Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434 [TBL] [Abstract][Full Text] [Related]
26. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Kawamata T; Yamada M; Yasuda M; Seki M Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021 [TBL] [Abstract][Full Text] [Related]
27. A microfluidic manipulator for enrichment and alignment of moving cells and particles. Chen HH; Sun B; Tran KK; Shen H; Gao D J Biomech Eng; 2009 Jul; 131(7):074505. PubMed ID: 19640141 [TBL] [Abstract][Full Text] [Related]
28. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Choi S; Park JK Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973 [TBL] [Abstract][Full Text] [Related]
29. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
30. On-chip high-speed sorting of micron-sized particles for high-throughput analysis. Holmes D; Sandison ME; Green NG; Morgan H IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169 [TBL] [Abstract][Full Text] [Related]
31. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Xuan X; Li D Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466 [TBL] [Abstract][Full Text] [Related]
32. Sample concentration and impedance detection on a microfluidic polymer chip. Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178 [TBL] [Abstract][Full Text] [Related]
33. A continuous DC-insulator dielectrophoretic sorter of microparticles. Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990 [TBL] [Abstract][Full Text] [Related]
34. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays. Choi S; Park JK Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090 [TBL] [Abstract][Full Text] [Related]
35. Continuous particle separation based on electrical properties using alternating current dielectrophoresis. Cetin B; Li D Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062 [TBL] [Abstract][Full Text] [Related]
36. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Johann R; Renaud P Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695 [TBL] [Abstract][Full Text] [Related]
37. Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Yamada M; Kobayashi J; Yamato M; Seki M; Okano T Lab Chip; 2008 May; 8(5):772-8. PubMed ID: 18432348 [TBL] [Abstract][Full Text] [Related]
38. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis. Cetin B; Li D Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609 [TBL] [Abstract][Full Text] [Related]
39. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Yang CH; Huang KS; Chang JY Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710 [TBL] [Abstract][Full Text] [Related]
40. Particle separation by a moving air-liquid interface in a microchannel. Wang F; Chon CH; Li D J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]