These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 16234949)

  • 1. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel.
    Yoon SK; Mitchell M; Choban ER; Kenis PJ
    Lab Chip; 2005 Nov; 5(11):1259-63. PubMed ID: 16234949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests.
    Morier P; Vollet C; Michel PE; Reymond F; Rossier JS
    Electrophoresis; 2004 Nov; 25(21-22):3761-8. PubMed ID: 15565685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels.
    Waghmare PR; Mitra SK
    J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-directed liquid flow inside microchannels.
    Zhao B; Moore JS; Beebe DJ
    Science; 2001 Feb; 291(5506):1023-6. PubMed ID: 11161212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive regulation of volume-flow ratio for microfluidic streams with different hydrophilicity and viscosity.
    Kim SJ; Lim YT; Yang H; Kim K; Kim YT
    Electrophoresis; 2010 Jan; 31(4):709-13. PubMed ID: 20094991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distillation in microchemical systems using capillary forces and segmented flow.
    Hartman RL; Sahoo HR; Yen BC; Jensen KF
    Lab Chip; 2009 Jul; 9(13):1843-9. PubMed ID: 19532958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.
    Sharma A; Tiwari V; Kumar V; Mandal TK; Bandyopadhyay D
    Electrophoresis; 2014 Oct; 35(20):2930-7. PubMed ID: 25044128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a water-xylene interface in a microchannel without sidewalls.
    Watanabe M
    Anal Chem; 2009 Oct; 81(19):8213-8. PubMed ID: 19715305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface motion of capillary-driven flow in rectangular microchannel.
    Ichikawa N; Hosokawa K; Maeda R
    J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial microfluidics.
    Di Carlo D
    Lab Chip; 2009 Nov; 9(21):3038-46. PubMed ID: 19823716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity-induced swirl of nanoparticles in microfluidics.
    Zhao C; Oztekin A; Cheng X
    J Nanopart Res; 2013 Apr; 15():1611. PubMed ID: 24563612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.