BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16234951)

  • 1. Electrokinetic molecular separation in nanoscale fluidic channels.
    Garcia AL; Ista LK; Petsev DN; O'Brien MJ; Bisong P; Mammoli AA; Brueck SR; López GP
    Lab Chip; 2005 Nov; 5(11):1271-6. PubMed ID: 16234951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic transport and separations in fluidic nanochannels.
    Yuan Z; Garcia AL; Lopez GP; Petsev DN
    Electrophoresis; 2007 Feb; 28(4):595-610. PubMed ID: 17304495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic transport of charged solutes in micro- and nanochannels: the influence of transverse electromigration.
    Xuan X; Li D
    Electrophoresis; 2006 Dec; 27(24):5020-31. PubMed ID: 17124708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-solution oligonucleotide separation in nanoscale channels.
    Pennathur S; Baldessari F; Santiago JG; Kattah MG; Steinman JB; Utz PJ
    Anal Chem; 2007 Nov; 79(21):8316-22. PubMed ID: 17883279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions.
    Das S; Chakraborty S
    Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements.
    Das S; Chakraborty S
    Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced electrokinetic transport in micro-nanofluidic interconnect devices.
    Jin X; Joseph S; Gatimu EN; Bohn PW; Aluru NR
    Langmuir; 2007 Dec; 23(26):13209-22. PubMed ID: 17999544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers.
    Chen L; Conlisk AT
    Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system for micro/nano fluidic flow diagnostics.
    Nath P; Roy S; Conlisk T; Fleischman AJ
    Biomed Microdevices; 2005 Sep; 7(3):169-77. PubMed ID: 16133803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic pumping and detection of low-volume flows in nanochannels.
    Mela P; Tas NR; Berenschot EJ; van Nieuwkasteele J; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3687-93. PubMed ID: 15565691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.