BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16234951)

  • 21. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns.
    Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement.
    Hibara A; Tsukahara T; Kitamori T
    J Chromatogr A; 2009 Jan; 1216(4):673-83. PubMed ID: 19121833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes.
    Hahn T; O'Sullivan CK; Drese KS
    Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated nanoliter systems.
    Hong JW; Quake SR
    Nat Biotechnol; 2003 Oct; 21(10):1179-83. PubMed ID: 14520403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micellar electrokinetic chromatography for high-performance analytical separation.
    Terabe S
    Chem Rec; 2008; 8(5):291-301. PubMed ID: 18956478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels.
    Zhang Y; Gamble TC; Neumann A; Lopez GP; Brueck SR; Petsev DN
    Lab Chip; 2008 Oct; 8(10):1671-5. PubMed ID: 18813389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip.
    Thorslund S; Lindberg P; Andrén PE; Nikolajeff F; Bergquist J
    Electrophoresis; 2005 Dec; 26(24):4674-83. PubMed ID: 16273585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips.
    Roman GT; McDaniel K; Culbertson CT
    Analyst; 2006 Feb; 131(2):194-201. PubMed ID: 16440082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release and molecular transport of cationic and anionic fluorescent molecules in mesoporous silica spheres.
    Ng JB; Kamali-Zare P; Brismar H; Bergström L
    Langmuir; 2008 Oct; 24(19):11096-102. PubMed ID: 18767822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoretic size separation of particles in a periodically constricted microchannel.
    Cheng KL; Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2008 Mar; 128(10):101101. PubMed ID: 18345869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels.
    Oh YJ; Bottenus D; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1609-17. PubMed ID: 19458870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous ion transport in 2-nm hydrophilic nanochannels.
    Duan C; Majumdar A
    Nat Nanotechnol; 2010 Dec; 5(12):848-52. PubMed ID: 21113159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries.
    Campbell LC; Wilkinson MJ; Manz A; Camilleri P; Humphreys CJ
    Lab Chip; 2004 Jun; 4(3):225-9. PubMed ID: 15159783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.
    Sueyoshi K; Kitagawa F; Otsuka K
    Anal Chem; 2008 Feb; 80(4):1255-62. PubMed ID: 18201071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.