These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 16235116)
1. Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds. Coullin P; Bed'Hom B; Candelier JJ; Vettese D; Maucolin S; Moulin S; Galkina SA; Bernheim A; Volobouev V Chromosome Res; 2005; 13(7):665-73. PubMed ID: 16235116 [TBL] [Abstract][Full Text] [Related]
2. Distribution of CR1-like transposable element in woodpeckers (Aves Piciformes): Z sex chromosomes can act as a refuge for transposable elements. Bertocchi NA; de Oliveira TD; Del Valle Garnero A; Coan RLB; Gunski RJ; Martins C; Torres FP Chromosome Res; 2018 Dec; 26(4):333-343. PubMed ID: 30499043 [TBL] [Abstract][Full Text] [Related]
3. A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates. Drew AC; Brindley PJ Mol Biol Evol; 1997 Jun; 14(6):602-10. PubMed ID: 9190061 [TBL] [Abstract][Full Text] [Related]
4. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Vandergon TL; Reitman M Mol Biol Evol; 1994 Nov; 11(6):886-98. PubMed ID: 7815928 [TBL] [Abstract][Full Text] [Related]
5. A novel family of repetitive DNA sequences amplified site-specifically on the W chromosomes in Neognathous birds. Yamada K; Nishida-Umehara C; Ishijima J; Murakami T; Shibusawa M; Tsuchiya K; Tsudzuki M; Matsuda Y Chromosome Res; 2006; 14(6):613-27. PubMed ID: 16964568 [TBL] [Abstract][Full Text] [Related]
6. The Specific Requirements for CR1 Retrotransposition Explain the Scarcity of Retrogenes in Birds. Suh A J Mol Evol; 2015 Aug; 81(1-2):18-20. PubMed ID: 26223967 [TBL] [Abstract][Full Text] [Related]
7. Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. Uno Y; Nishida C; Hata A; Ishishita S; Matsuda Y PLoS One; 2019; 14(3):e0214028. PubMed ID: 30913221 [TBL] [Abstract][Full Text] [Related]
8. Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds. Kaiser VB; van Tuinen M; Ellegren H Mol Biol Evol; 2007 Jan; 24(1):338-47. PubMed ID: 17077154 [TBL] [Abstract][Full Text] [Related]
9. CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes). Liu Z; He L; Yuan H; Yue B; Li J Gene; 2012 Jul; 502(2):125-32. PubMed ID: 22565186 [TBL] [Abstract][Full Text] [Related]
10. Low frequency of microsatellites in the avian genome. Primmer CR; Raudsepp T; Chowdhary BP; Møller AP; Ellegren H Genome Res; 1997 May; 7(5):471-82. PubMed ID: 9149943 [TBL] [Abstract][Full Text] [Related]
11. A recent chicken repeat 1 retrotransposition confirms the Coscoroba-Cape Barren goose clade. St John J; Cotter JP; Quinn TW Mol Phylogenet Evol; 2005 Oct; 37(1):83-90. PubMed ID: 16182151 [TBL] [Abstract][Full Text] [Related]
12. FISH mapping of 57 BAC clones reveals strong conservation of synteny between Galliformes and Anseriformes. Fillon V; Vignoles M; Crooijmans RP; Groenen MA; Zoorob R; Vignal A Anim Genet; 2007 Jun; 38(3):303-7. PubMed ID: 17539975 [TBL] [Abstract][Full Text] [Related]
13. Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes. Raudsepp T; Houck ML; O'Brien PC; Ferguson-Smith MA; Ryder OA; Chowdhary BP Cytogenet Genome Res; 2002; 98(1):54-60. PubMed ID: 12584441 [TBL] [Abstract][Full Text] [Related]
14. Identification of CR1 retroposons in Arborophila rufipectus and their application to Phasianidae phylogeny. Cui Y; Yan C; Sun T; Li J; Yue B; Zhang X; Li J Mol Ecol Resour; 2016 Jul; 16(4):1037-49. PubMed ID: 26929266 [TBL] [Abstract][Full Text] [Related]
15. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Shibusawa M; Nishibori M; Nishida-Umehara C; Tsudzuki M; Masabanda J; Griffin DK; Matsuda Y Cytogenet Genome Res; 2004; 106(1):111-9. PubMed ID: 15218250 [TBL] [Abstract][Full Text] [Related]
16. The use of primed in situ synthesis (PRINS) to analyze nucleolar organizer regions (NORs) and telomeric DNA sequences in the domestic chicken genome. Bugno-Poniewierska M; Potocki L; Bładek B; Pawlina K; Wnuk M; Pietras M; Słota E Folia Biol (Krakow); 2013; 61(3-4):149-53. PubMed ID: 24279162 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes). Yamada K; Shibusawa M; Tsudzuki M; Matsuda Y Cytogenet Genome Res; 2002; 98(4):255-61. PubMed ID: 12826749 [TBL] [Abstract][Full Text] [Related]
19. A CR1 element is embedded in a novel tandem repeat (HinfI repeat) within the chicken genome. Li J; Leung FC Genome; 2006 Feb; 49(2):97-103. PubMed ID: 16498459 [TBL] [Abstract][Full Text] [Related]
20. Chromosome reshuffling in birds of prey: the karyotype of the world's largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). de Oliveira EH; Habermann FA; Lacerda O; Sbalqueiro IJ; Wienberg J; Müller S Chromosoma; 2005 Nov; 114(5):338-43. PubMed ID: 16163545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]