BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 16235223)

  • 1. Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy.
    Hertel MM; Denysenkov VP; Bennati M; Prisner TF
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S248-55. PubMed ID: 16235223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed electron-nuclear double resonance (ENDOR) at 140 GHz.
    Bennati M; Farrar CT; Bryant JA; Inati SJ; Weis V; Gerfen GJ; Riggs-Gelasco P; Stubbe J; Griffin RG
    J Magn Reson; 1999 Jun; 138(2):232-43. PubMed ID: 10341127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed ELDOR spectroscopy measures the distance between the two tyrosyl dadicals in the R2 subunit of the E. coli ribonucleotide reductase.
    Bennati M; Weber A; Antonic J; Perlstein DL; Robblee J; Stubbe J
    J Am Chem Soc; 2003 Dec; 125(49):14988-9. PubMed ID: 14653724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PELDOR study on the tyrosyl radicals in the R2 protein of mouse ribonucleotide reductase.
    Biglino D; Schmidt PP; Reijerse EJ; Lubitz W
    Phys Chem Chem Phys; 2006 Jan; 8(1):58-62. PubMed ID: 16482244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase.
    Denysenkov VP; Prisner TF; Stubbe J; Bennati M
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13386-90. PubMed ID: 16938868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frequency 94 GHz ENDOR characterization of the metal binding site in wild-type Ras x GDP and its oncogenic mutant G12V in frozen solution.
    Bennati M; Hertel MM; Fritscher J; Prisner TF; Weiden N; Hofweber R; Spörner M; Horn G; Kalbitzer HR
    Biochemistry; 2006 Jan; 45(1):42-50. PubMed ID: 16388579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy.
    Lendzian F
    Biochim Biophys Acta; 2005 Feb; 1707(1):67-90. PubMed ID: 15721607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific replacement of Y356 with 3,4-dihydroxyphenylalanine in the beta2 subunit of E. coli ribonucleotide reductase.
    Seyedsayamdost MR; Stubbe J
    J Am Chem Soc; 2006 Mar; 128(8):2522-3. PubMed ID: 16492021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.
    Maly T; MacMillan F; Zwicker K; Kashani-Poor N; Brandt U; Prisner TF
    Biochemistry; 2004 Apr; 43(13):3969-78. PubMed ID: 15049704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonselective excitation of pulsed ELDOR using multi-frequency microwaves.
    Asada Y; Mutoh R; Ishiura M; Mino H
    J Magn Reson; 2011 Dec; 213(1):200-5. PubMed ID: 21978661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron paramagnetic resonance (EPR) spectroscopy of the stable-free radical in the native metallo-cofactor of the manganese-ribonucleotide reductase (Mn-RNR) of Corynebacterium glutamicum.
    Abbouni B; Oehlmann W; Stolle P; Pierik AJ; Auling G
    Free Radic Res; 2009 Oct; 43(10):943-50. PubMed ID: 19707921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency (140-GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast.
    Bar G; Bennati M; Nguyen HH; Ge J; Stubbe JA; Griffin RG
    J Am Chem Soc; 2001 Apr; 123(15):3569-76. PubMed ID: 11472128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Polarization Electron-Nuclear Double Resonance Spectroscopy.
    Rizzato R; Bennati M
    Chemphyschem; 2015 Dec; 16(18):3769-73. PubMed ID: 26503037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters.
    Svistunenko DA; Jones GA
    Phys Chem Chem Phys; 2009 Aug; 11(31):6600-13. PubMed ID: 19639135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy.
    Meichsner SL; Kutin Y; Kasanmascheff M
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19155-19161. PubMed ID: 33844392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, multi-frequency, and multi-phase pulsed measurements.
    Cho FH; Stepanov V; Takahashi S
    Rev Sci Instrum; 2014 Jul; 85(7):075110. PubMed ID: 25085176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and electron paramagnetic resonance spin trapping detection of thiyl radicals in model proteins and in the R1 subunit of Escherichia coli ribonucleotide reductase.
    Kolberg M; Bleifuss G; Sjöberg BM; Gräslund A; Lubitz W; Lendzian F; Lassmann G
    Arch Biochem Biophys; 2002 Jan; 397(1):57-68. PubMed ID: 11747310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket.
    Liu A; Pötsch S; Davydov A; Barra AL; Rubin H; Gräslund A
    Biochemistry; 1998 Nov; 37(46):16369-77. PubMed ID: 9819229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase.
    Bennati M; Robblee JH; Mugnaini V; Stubbe J; Freed JH; Borbat P
    J Am Chem Soc; 2005 Nov; 127(43):15014-5. PubMed ID: 16248626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer.
    Morley GW; Brunel LC; van Tol J
    Rev Sci Instrum; 2008 Jun; 79(6):064703. PubMed ID: 18601425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.