BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 16235233)

  • 1. Synthesis and characterization of DNA quadruplexes containing T-tetrads formed by bunch-oligonucleotides.
    Oliviero G; Amato J; Borbone N; Galeone A; Varra M; Piccialli G; Mayol L
    Biopolymers; 2006 Feb; 81(3):194-201. PubMed ID: 16235233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of monomolecular DNA G-quadruplexes formed by tetra-end-linked oligonucleotides.
    Oliviero G; Amato J; Borbone N; Galeone A; Petraccone L; Varra M; Piccialli G; Mayol L
    Bioconjug Chem; 2006; 17(4):889-98. PubMed ID: 16848394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements.
    Petraccone L; Erra E; Esposito V; Randazzo A; Mayol L; Nasti L; Barone G; Giancola C
    Biochemistry; 2004 Apr; 43(16):4877-84. PubMed ID: 15096057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability.
    Oliviero G; Borbone N; Amato J; D'Errico S; Galeone A; Piccialli G; Varra M; Mayol L
    Biopolymers; 2009 Jun; 91(6):466-77. PubMed ID: 19189376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)]4.
    Esposito V; Randazzo A; Piccialli G; Petraccone L; Giancola C; Mayol L
    Org Biomol Chem; 2004 Feb; 2(3):313-8. PubMed ID: 14747859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented right- and left-handed quadruplex structures formed by heterochiral oligodeoxyribonucleotides.
    Virgilio A; Esposito V; Citarella G; Mangoni A; Mayol L; Galeone A
    Biochimie; 2011 Jul; 93(7):1193-6. PubMed ID: 21527307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of an interlocked quadruplex dimer by d(GGGT).
    Krishnan-Ghosh Y; Liu D; Balasubramanian S
    J Am Chem Soc; 2004 Sep; 126(35):11009-16. PubMed ID: 15339186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the properties and the solution structure for RNA and DNA quadruplexes which contain two GGAGG sequences joined with a tetranucleotide linker.
    Liu H; Kugimiya A; Sakurai T; Katahira M; Uesugi S
    Nucleosides Nucleotides Nucleic Acids; 2002; 21(11-12):785-801. PubMed ID: 12537021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism spectra of DNA quadruplexes [d(G(5)T(5))](4) as formed with G(4) and T(4) tetrads and [d(G(5)T(5)). d(A(5)C(5))]2 as formed with Watson-Crick-like (G-C)(2) and (T-A)(2) tetrads.
    Ito H; Tanaka S; Miyasaka M
    Biopolymers; 2002 Oct; 65(2):61-80. PubMed ID: 12209457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR solution structure of a parallel LNA quadruplex.
    Randazzo A; Esposito V; Ohlenschläger O; Ramachandran R; Mayola L
    Nucleic Acids Res; 2004; 32(10):3083-92. PubMed ID: 15181173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of DNA quadruplexes through G:C:G:C tetrads. Solution structure of d(GCGGTGGAT).
    Webba da Silva M
    Biochemistry; 2003 Dec; 42(49):14356-65. PubMed ID: 14661946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of G4T4G4.
    Vondrusková J; Kypr J; Kejnovská I; Fialová M; Vorlícková M
    Int J Biol Macromol; 2008 Dec; 43(5):463-7. PubMed ID: 18812187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and K+ ion-dependent stability of a parallel-stranded DNA quadruplex containing a core A-tetrad.
    Searle MS; Williams HE; Gallagher CT; Grant RJ; Stevens MF
    Org Biomol Chem; 2004 Mar; 2(6):810-2. PubMed ID: 15007406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bunch-oligonucleotide forming stable monomolecular quadruplex containing a T-tetrad.
    Borbone N; Oliviero G; Galeone A; Piccialli G; Varra M; Mayol L
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):443-6. PubMed ID: 16247967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of G-tract length on the topology and stability of intramolecular DNA quadruplexes.
    Rachwal PA; Brown T; Fox KR
    Biochemistry; 2007 Mar; 46(11):3036-44. PubMed ID: 17311417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of structure-switching in G-quadruplexes using end-stacking ability.
    Seo YJ; Lee IJ; Kim BH
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3910-3. PubMed ID: 18585032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxidase activity-structure relationship of the intermolecular four-stranded G-quadruplex-hemin complexes and their application in Hg2+ ion detection.
    Kong DM; Wu J; Wang N; Yang W; Shen HX
    Talanta; 2009 Dec; 80(2):459-65. PubMed ID: 19836504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of G-quadruplex folding topology with LNA-modified human telomeric sequences in K+ solution.
    Pradhan D; Hansen LH; Vester B; Petersen M
    Chemistry; 2011 Feb; 17(8):2405-13. PubMed ID: 21264960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-stranded DNA structure stabilized by a novel G:C:A:T tetrad.
    Escaja N; Gelpí JL; Orozco M; Rico M; Pedroso E; González C
    J Am Chem Soc; 2003 May; 125(19):5654-62. PubMed ID: 12733903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.