BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16235657)

  • 21. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model.
    Dworzak J; Lamecker H; von Berg J; Klinder T; Lorenz C; Kainmüller D; Seim H; Hege HC; Zachow S
    Int J Comput Assist Radiol Surg; 2010 Mar; 5(2):111-24. PubMed ID: 20033504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preoperative and early postoperative three-dimensional changes of the rib cage after posterior instrumentation in adolescent idiopathic scoliosis.
    Delorme S; Violas P; Dansereau J; de Guise J; Aubin CE; Labelle H
    Eur Spine J; 2001 Apr; 10(2):101-7. PubMed ID: 11345629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of rib cage parameters from 3-Dimensional reconstruction images obtained using simultaneous biplanar radiographic scanning technique in adolescent idiopathic scoliosis: Comparison with conventional computed tomography.
    Machino M; Kawakami N; Ohara T; Saito T; Tauchi R; Imagama S
    J Clin Neurosci; 2020 May; 75():94-98. PubMed ID: 32178993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments.
    Mu Z; Fu D; Kuduvalli G
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1288-300. PubMed ID: 18753044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data.
    Staal J; van Ginneken B; Viergever MA
    Med Image Anal; 2007 Feb; 11(1):35-46. PubMed ID: 17126065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probabilistic atlas prior for CT image reconstruction.
    Rashed EA; Kudo H
    Comput Methods Programs Biomed; 2016 May; 128():119-36. PubMed ID: 27040837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
    Kolehmainen V; Vanne A; Siltanen S; Järvenpää S; Kaipio JP; Lassas M; Kalke M
    IEEE Trans Med Imaging; 2006 Feb; 25(2):218-28. PubMed ID: 16468456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Articulated spine models for 3-D reconstruction from partial radiographic data.
    Boisvert J; Cheriet F; Pennec X; Labelle H; Ayache N
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2565-74. PubMed ID: 18990626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of pelvic and spinal postural patterns in upright position. Specific cases of scoliotic patients.
    Berthonnaud E; Dimnet J; Hilmi R
    Comput Med Imaging Graph; 2009 Dec; 33(8):634-43. PubMed ID: 19635659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A 3-D image reconstruction algorithm based on helical CT raw data].
    Huo XK; Wei S; Cheng ZY
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):284-6. PubMed ID: 17039940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of shapes using statistical models and stochastic optimization.
    Destrempes F; Mignotte M; Angers JF
    IEEE Trans Pattern Anal Mach Intell; 2007 Sep; 29(9):1603-15. PubMed ID: 17627047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D biplanar reconstruction of lower limbs using nonlinear statistical models.
    Nguyen DCT; Benameur S; Mignotte M; Lavoie F
    Med Biol Eng Comput; 2023 Nov; 61(11):2877-2894. PubMed ID: 37505415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine.
    Vrtovec T; Likar B; Pernus F
    Phys Med Biol; 2008 Apr; 53(7):1895-908. PubMed ID: 18364545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regularising limited view tomography using anatomical reference images and information theoretic similarity metrics.
    Van de Sompel D; Brady M
    Med Image Anal; 2012 Jan; 16(1):278-300. PubMed ID: 21962917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An active shape model for the reconstruction of scoliotic deformities from back shape data.
    Huysmans T; Moens P; Van Audekercke R
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):813-21. PubMed ID: 15963614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images.
    Pinheiro AP; Coelho JC; Veiga ACP; Vrtovec T
    Comput Methods Programs Biomed; 2018 Jul; 161():85-92. PubMed ID: 29852970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic selection of the optimal cardiac phase for gated three-dimensional coronary x-ray angiography.
    Rasche V; Movassaghi B; Grass M; Schäfer D; Buecker A
    Acad Radiol; 2006 May; 13(5):630-40. PubMed ID: 16627204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonrigid structure-from-motion: estimating shape and motion with hierarchical Priors.
    Torresani L; Hertzmann A; Bregler C
    IEEE Trans Pattern Anal Mach Intell; 2008 May; 30(5):878-92. PubMed ID: 18369256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new X-ray calibration/reconstruction system for 3D clinical assessment of spinal deformities.
    Cheriet F; Remaki L; Bellefleur C; Koller A; Labelle H; Dansereau J
    Stud Health Technol Inform; 2002; 91():257-61. PubMed ID: 15457733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.