These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16235723)

  • 1. Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1.
    Manjula K; Podile AR
    Indian J Exp Biol; 2005 Oct; 43(10):892-6. PubMed ID: 16235723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Production of neutral beta-mannanase by Bacillus subtilis and its properties].
    Cui F; Shi J; Lu Z
    Wei Sheng Wu Xue Bao; 1999 Feb; 39(1):60-3. PubMed ID: 12555403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil.
    Jeong JH; Jeon YD; Lee OM; Kim JD; Lee NR; Park GT; Son HJ
    Biodegradation; 2010 Nov; 21(6):1029-40. PubMed ID: 20454836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2008; 73(2):249-55. PubMed ID: 19226761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optimization of cultivation conditions of the alpha-amylase producer Bacillus subtilis 147].
    Avdiiuk KV; Varbanets' LD
    Mikrobiol Z; 2008; 70(1):10-6. PubMed ID: 18416149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grass degrading beta-1,3-1,4-D-glucanases from Bacillus subtilis GN156: purification and characterization of glucanase J1 and pJ2 possessing extremely acidic pI.
    Apiraksakorn J; Nitisinprasert S; Levin RE
    Appl Biochem Biotechnol; 2008 Apr; 149(1):53-66. PubMed ID: 18350387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium optimization for the production of thermal stable beta-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology.
    Tang XJ; He GQ; Chen QH; Zhang XY; Ali MA
    Bioresour Technol; 2004 Jun; 93(2):175-81. PubMed ID: 15051079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Production of polygalacturonase by Bacillus subtilis cultured with waste and residues as carbon sources].
    Aksöz E
    Mikrobiyol Bul; 1990 Jul; 24(3):262-71. PubMed ID: 2126595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High production of cellulose degrading endo-1,4-β-D-glucanase using bagasse as a substrate from Bacillus subtilis KIBGE HAS.
    Bano S; Qader SA; Aman A; Syed MN; Durrani K
    Carbohydr Polym; 2013 Jan; 91(1):300-4. PubMed ID: 23044136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated beta-mannanase production.
    el-Helow ER; Khattab AA
    Acta Microbiol Immunol Hung; 1996; 43(4):289-99. PubMed ID: 9147720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An N-acetyl-beta-D-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum.
    Mamarabadi M; Jensen DF; Lübeck M
    Mycol Res; 2009 Jan; 113(Pt 1):33-43. PubMed ID: 18675351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass recycling from a riboflavin cultivation with B. subtilis: lysis, extract production and testing as substrate in riboflavin cultivation.
    Bretz K; Ilijevic S; Grüneberg M; Becker U; Syldatk C
    Biotechnol Bioeng; 2006 Dec; 95(6):1023-31. PubMed ID: 16732593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [beta-1,3-1,4-glucanase in spore-forming microorganisms. IV. Properties of some Bacillus-beta-glucan-hydrolases (author's transl)].
    Borriss R; Zemek J
    Zentralbl Bakteriol Naturwiss; 1981; 136(1):63-9. PubMed ID: 6784378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecto-glycanases and metabolic stability of the capsule in Cryptococcus neoformans.
    Maceková D; Farkas V; Kishida E; Takeo K
    J Basic Microbiol; 2006; 46(6):470-9. PubMed ID: 17139612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and molecular characterization of exo-beta-1,3-glucanases from the marine yeast Williopsis saturnus WC91-2.
    Peng Y; Chi ZM; Wang XH; Li J
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):85-94. PubMed ID: 19513709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Selection of beta-glucanase-producing Trichoderma köningii T199 and its fermentation conditions].
    Shi J; Cui F
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):750-2. PubMed ID: 12552835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls].
    Aktuganov GE; Galimzianova NF; Melent'ev AI; Kuz'mina LIu
    Mikrobiologiia; 2007; 76(4):471-9. PubMed ID: 17974203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust.
    Manjula K; Kishore GK; Podile AR
    Can J Microbiol; 2004 Sep; 50(9):737-44. PubMed ID: 15644928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [1,3-beta-Glucanases of actinomycetes].
    Tiunova NA; Kobzeva NIa; Zaĭkina IV; Eliakova LA; Nazarova NI
    Mikrobiologiia; 1983; 52(4):586-90. PubMed ID: 6358807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.