These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1623595)

  • 1. Failure of common glycation assays to detect glycation by fructose.
    Ahmed N; Furth AJ
    Clin Chem; 1992 Jul; 38(7):1301-3. PubMed ID: 1623595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fructose-induced fluorescence generation of reductively methylated glycated bovine serum albumin: evidence for nonenzymatic glycation of Amadori adducts.
    Suárez G; Maturana J; Oronsky AL; Raventós-Suárez C
    Biochim Biophys Acta; 1991 Sep; 1075(1):12-9. PubMed ID: 1892863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose.
    Suárez G; Rajaram R; Oronsky AL; Gawinowicz MA
    J Biol Chem; 1989 Mar; 264(7):3674-9. PubMed ID: 2537288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-Carnitine inhibits protein glycation in vitro and in vivo: evidence for a role in diabetic management.
    Rajasekar P; Anuradha CV
    Acta Diabetol; 2007 Jun; 44(2):83-90. PubMed ID: 17530472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods.
    Syrový I
    J Biochem Biophys Methods; 1994 Mar; 28(2):115-21. PubMed ID: 8040561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose-related glycation.
    Oimomi M; Nakamichi T; Ohara T; Sakai M; Igaki N; Hata F; Baba S
    Diabetes Res Clin Pract; 1989 Aug; 7(2):137-9. PubMed ID: 2776653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bovine serum albumin glycation by ribose and fructose in vitro and in vivo.
    Mou L; Hu P; Cao X; Chen Y; Xu Y; He T; Wei Y; He R
    Biochim Biophys Acta Mol Basis Dis; 2022 Jan; 1868(1):166283. PubMed ID: 34601015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.
    Ghelani H; Razmovski-Naumovski V; Pragada RR; Nammi S
    BMC Complement Altern Med; 2018 Jan; 18(1):13. PubMed ID: 29334926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro.
    Meeprom A; Sompong W; Chan CB; Adisakwattana S
    Molecules; 2013 May; 18(6):6439-54. PubMed ID: 23722732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine.
    Nandhini AT; Thirunavukkarasu V; Anuradha CV
    Acta Physiol Scand; 2004 Jul; 181(3):297-303. PubMed ID: 15196090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence against the formation of 2-amino-6-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-hexanoic acid ('pyrraline') as an early-stage product or advanced glycation end product in non-enzymic protein glycation.
    Smith PR; Somani HH; Thornalley PJ; Benn J; Sonksen PH
    Clin Sci (Lond); 1993 Jan; 84(1):87-93. PubMed ID: 8382140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructated protein is more resistant to ATP-dependent proteolysis than glucated protein possibly as a result of higher content of Maillard fluorophores.
    Suárez G; Etlinger JD; Maturana J; Weitman D
    Arch Biochem Biophys; 1995 Aug; 321(1):209-13. PubMed ID: 7639522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of superoxide dismutase on fructosamine assay.
    Jones AF; Winkles JW; Thornalley PJ; Lunec J; Jennings PE; Barnett AH
    Clin Chem; 1987 Jan; 33(1):147-9. PubMed ID: 3802464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics.
    Valencia JV; Weldon SC; Quinn D; Kiers GH; DeGroot J; TeKoppele JM; Hughes TE
    Anal Biochem; 2004 Jan; 324(1):68-78. PubMed ID: 14654047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.
    Yeboah FK; Alli I; Yaylayan VA
    J Agric Food Chem; 1999 Aug; 47(8):3164-72. PubMed ID: 10552625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of glycation-induced multiple protein modifications by Indian antidiabetic plant extracts.
    Tupe RS; Kemse NG; Khaire AA; Shaikh SA
    Pharm Biol; 2017 Dec; 55(1):68-75. PubMed ID: 27608964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Rates of Glycation Following Exposure to Unique Monosaccharides.
    Clarke DM; Koutnik AP; Johnson RJ; DeBlasi JM; Bikman BT; Arroyo JA; Reynolds PR
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.
    Adisakwattana S; Sompong W; Meeprom A; Ngamukote S; Yibchok-Anun S
    Int J Mol Sci; 2012; 13(2):1778-1789. PubMed ID: 22408423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic protein glycosylation: back-titration assay.
    Zähner D; Ramirez R; Malaisse WJ
    Diabetes Res Clin Pract; 1990 Jan; 8(1):61-8. PubMed ID: 2404727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructosylation generates neo-epitopes on human serum albumin.
    Allarakha S; Ahmad P; Ishtikhar M; Zaheer MS; Siddiqi SS; Moinuddin ; Ali A
    IUBMB Life; 2015 May; 67(5):338-47. PubMed ID: 25914162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.