These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 16236151)

  • 1. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.
    Sampedro J; Lee Y; Carey RE; dePamphilis C; Cosgrove DJ
    Plant J; 2005 Nov; 44(3):409-19. PubMed ID: 16236151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families.
    Lijavetzky D; Carbonero P; Vicente-Carbajosa J
    BMC Evol Biol; 2003 Jul; 3():17. PubMed ID: 12877745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth.
    Kong H; Landherr LL; Frohlich MW; Leebens-Mack J; Ma H; dePamphilis CW
    Plant J; 2007 Jun; 50(5):873-85. PubMed ID: 17470057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).
    Wang D; Pei K; Fu Y; Sun Z; Li S; Liu H; Tang K; Han B; Tao Y
    Gene; 2007 Jun; 394(1-2):13-24. PubMed ID: 17408882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The class III peroxidase multigenic family in rice and its evolution in land plants.
    Passardi F; Longet D; Penel C; Dunand C
    Phytochemistry; 2004 Jul; 65(13):1879-93. PubMed ID: 15279994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of NAC transcription factor family in rice.
    Nuruzzaman M; Manimekalai R; Sharoni AM; Satoh K; Kondoh H; Ooka H; Kikuchi S
    Gene; 2010 Oct; 465(1-2):30-44. PubMed ID: 20600702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs.
    Sampedro J; Carey RE; Cosgrove DJ
    J Plant Res; 2006 Jan; 119(1):11-21. PubMed ID: 16411016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa.
    Leseberg CH; Li A; Kang H; Duvall M; Mao L
    Gene; 2006 Aug; 378():84-94. PubMed ID: 16831523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis.
    Yang Y; Yu X; Wu P
    Mol Phylogenet Evol; 2006 Apr; 39(1):248-62. PubMed ID: 16290186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.
    Seader VH; Thornsberry JM; Carey RE
    J Plant Res; 2016 Mar; 129(2):199-207. PubMed ID: 26646380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
    Tang H; Wang X; Bowers JE; Ming R; Alam M; Paterson AH
    Genome Res; 2008 Dec; 18(12):1944-54. PubMed ID: 18832442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of the rice miR395 gene family.
    Guddeti S; Zhang DC; Li AL; Leseberg CH; Kang H; Li XG; Zhai WX; Johns MA; Mao L
    Cell Res; 2005 Aug; 15(8):631-8. PubMed ID: 16117853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa).
    Jain M; Tyagi AK; Khurana JP
    Genomics; 2006 Sep; 88(3):360-71. PubMed ID: 16707243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice.
    Jiang D; Yin C; Yu A; Zhou X; Liang W; Yuan Z; Xu Y; Yu Q; Wen T; Zhang D
    Cell Res; 2006 May; 16(5):507-18. PubMed ID: 16699546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an ancient whole-genome duplication event in rice and other cereals.
    Tian CG; Xiong YQ; Liu TY; Sun SH; Chen LB; Chen MS
    Yi Chuan Xue Bao; 2005 May; 32(5):519-27. PubMed ID: 16018264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.