BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16236339)

  • 1. Applicability of alkaline hydrolysis for remediation of TNT-contaminated water.
    Hwang S; Ruff TJ; Bouwer EJ; Larson SL; Davis JL
    Water Res; 2005 Nov; 39(18):4503-11. PubMed ID: 16236339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization of alkaline TNT hydrolysis effluents using UV/H(2)O(2).
    Hwang S; Bouwer EJ; Larson SL; Davis JL
    J Hazard Mater; 2004 Apr; 108(1-2):61-7. PubMed ID: 15081163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic degradation of explosives contaminated water.
    Lee SJ; Son HS; Lee HK; Zoh KD
    Water Sci Technol; 2002; 46(11-12):139-45. PubMed ID: 12523745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The possible reduction pathways of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.
    Qiao H; Feng HJ; Liu SY; Wang CJ; Zhang Y; Gao YN; Li WB; Yao J; Wang MZ; Shen DS
    Water Sci Technol; 2011; 64(12):2474-82. PubMed ID: 22170844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii.
    Cruz-Uribe O; Rorrer GL
    Biotechnol Bioeng; 2006 Feb; 93(3):401-12. PubMed ID: 16187335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica.
    Ziganshin AM; Naumova RP; Pannier AJ; Gerlach R
    Chemosphere; 2010 Apr; 79(4):426-33. PubMed ID: 20185159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena.
    Claus H; Bausinger T; Lehmler I; Perret N; Fels G; Dehner U; Preuss J; König H
    Biodegradation; 2007 Feb; 18(1):27-35. PubMed ID: 16758276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the alkaline hydrolysis of important nitroaromatic co-contaminants of 2,4,6-trinitrotoluene in highly contaminated soils.
    Emmrich M
    Environ Sci Technol; 2001 Mar; 35(5):874-7. PubMed ID: 11351529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative and mixture sediment toxicity of trinitrotoluene and its major transformation products to a freshwater midge.
    Lotufo GR; Farrar JD
    Arch Environ Contam Toxicol; 2005 Oct; 49(3):333-42. PubMed ID: 16170451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of explosives-related compounds using nickel catalysts.
    Fuller ME; Schaefer CE; Lowey JM
    Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron.
    Nefso EK; Burns SE; McGrath CJ
    J Hazard Mater; 2005 Aug; 123(1-3):79-88. PubMed ID: 15961226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.
    Kalderis D; Hawthorne SB; Clifford AA; Gidarakos E
    J Hazard Mater; 2008 Nov; 159(2-3):329-34. PubMed ID: 18384944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter.
    Ding K; Byrnes C; Bridge J; Grannas A; Xu W
    Chemosphere; 2018 Apr; 197():603-610. PubMed ID: 29407823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.
    Qiao H; Wang HL; Feng HJ; Yao J; Shen DS; Tang ZJ
    J Hazard Mater; 2010 Jul; 179(1-3):989-98. PubMed ID: 20434261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater.
    Barreto-Rodrigues M; Silva FT; Paiva TC
    J Hazard Mater; 2009 Jun; 165(1-3):1224-8. PubMed ID: 19022574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pine bark on the biotransformation of trinitrotoluene and on the bacterial community structure in a batch experiment.
    Chusova O; Nolvak H; Nehrenheim E; Truu J; Odlare M; Oopkaup K; Truu M
    Environ Technol; 2014; 35(17-20):2456-65. PubMed ID: 25145200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study.
    Innemanová P; Velebová R; Filipová A; Čvančarová M; Pokorný P; Němeček J; Cajthaml T
    N Biotechnol; 2015 Dec; 32(6):701-9. PubMed ID: 25882606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential kinetics and temperature dependence of abiotic and biotic processes controlling the environmental fate of TNT in simulated marine systems.
    Chappell MA; Porter BE; Price CL; Pettway BA; George RD
    Mar Pollut Bull; 2011 Aug; 62(8):1736-43. PubMed ID: 21683419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron.
    Zhang X; Lin YM; Chen ZL
    J Hazard Mater; 2009 Jun; 165(1-3):923-7. PubMed ID: 19084332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments.
    Boparai HK; Comfort SD; Shea PJ; Szecsody JE
    Chemosphere; 2008 Mar; 71(5):933-41. PubMed ID: 18086486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.