These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1623675)

  • 1. The role of vascular endothelium in fibroblast activation and tissue fibrosis, particularly in scleroderma (systemic sclerosis) and pachydermoperiostosis (primary hypertrophic osteoarthropathy).
    Kahaleh MB
    Clin Exp Rheumatol; 1992; 10 Suppl 7():51-6. PubMed ID: 1623675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can fibroblasts determine the late differing outcome between systemic sclerosis and primary hypertrophic osteoarthropathy (pachydermoperiostosis)?
    Matucci-Cerinic M; Pignone A; Generini S; Korn JH
    Clin Exp Rheumatol; 2000; 18(1):1-2. PubMed ID: 10728436
    [No Abstract]   [Full Text] [Related]  

  • 3. Human monocyte modulation of endothelial cells and fibroblast growth: possible mechanism for fibrosis.
    Kahaleh MB; DeLustro F; Bock W; LeRoy EC
    Clin Immunol Immunopathol; 1986 May; 39(2):242-55. PubMed ID: 3516470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different interaction of mast cells with human endothelial cells and fibroblasts.
    Ohtsuka T
    Eur J Dermatol; 2000 Mar; 10(2):115-21. PubMed ID: 10694310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrosis in scleroderma.
    Kissin EY; Korn JH
    Rheum Dis Clin North Am; 2003 May; 29(2):351-69. PubMed ID: 12841299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis.
    Laplante P; Raymond MA; Gagnon G; Vigneault N; Sasseville AM; Langelier Y; Bernard M; Raymond Y; Hébert MJ
    J Immunol; 2005 May; 174(9):5740-9. PubMed ID: 15843576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast and endothelial apoptosis in systemic sclerosis.
    Jun JB; Kuechle M; Harlan JM; Elkon KB
    Curr Opin Rheumatol; 2003 Nov; 15(6):756-60. PubMed ID: 14569206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor.
    Serratì S; Cinelli M; Margheri F; Guiducci S; Del Rosso A; Pucci M; Fibbi G; Bazzichi L; Bombardieri S; Matucci-Cerinic M; Del Rosso M
    J Pathol; 2006 Oct; 210(2):240-8. PubMed ID: 16917801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in research into systemic sclerosis.
    Kahaleh B
    Lancet; 2004 Aug 14-20; 364(9434):561-2. PubMed ID: 15313340
    [No Abstract]   [Full Text] [Related]  

  • 10. A CD40-CD154 interaction in tissue fibrosis.
    Kawai M; Masuda A; Kuwana M
    Arthritis Rheum; 2008 Nov; 58(11):3562-73. PubMed ID: 18975310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular disease in scleroderma. Endothelial T lymphocyte-fibroblast interactions.
    Kahaleh MB
    Rheum Dis Clin North Am; 1990 Feb; 16(1):53-73. PubMed ID: 2406811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does transformation of microvascular endothelial cells into myofibroblasts play a key role in the etiology and pathology of fibrotic disease?
    Karasek MA
    Med Hypotheses; 2007; 68(3):650-5. PubMed ID: 17045756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparan sulfate-dependent ERK activation contributes to the overexpression of fibrotic proteins and enhanced contraction by scleroderma fibroblasts.
    Chen Y; Leask A; Abraham DJ; Pala D; Shiwen X; Khan K; Liu S; Carter DE; Wilcox-Adelman S; Goetinck P; Denton CP; Black CM; Pitsillides AA; Sarraf CE; Eastwood M
    Arthritis Rheum; 2008 Feb; 58(2):577-85. PubMed ID: 18240216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokines and human fibrosis.
    LeRoy EC; Trojanowska MI; Smith EA
    Eur Cytokine Netw; 1990; 1(4):215-9. PubMed ID: 1966552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunological modulation of dermal fibroblasts in scleroderma.
    Perlish JS; Fleischmajer R
    Immunol Ser; 1989; 46():605-24. PubMed ID: 2488871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis.
    Hua-Huy T; Dinh-Xuan AT
    Pathol Biol (Paris); 2015 Apr; 63(2):61-8. PubMed ID: 25818311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circulating progenitor cells and scleroderma.
    Gomer RH
    Curr Rheumatol Rep; 2008 Jul; 10(3):183-8. PubMed ID: 18638425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathogenesis of systemic sclerosis.
    LeRoy EC
    Clin Exp Rheumatol; 1989; 7 Suppl 3():S135-7. PubMed ID: 2691149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis.
    Huang J; Beyer C; Palumbo-Zerr K; Zhang Y; Ramming A; Distler A; Gelse K; Distler O; Schett G; Wollin L; Distler JH
    Ann Rheum Dis; 2016 May; 75(5):883-90. PubMed ID: 25858641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bleomycin-induced scleroderma model: what have we learned for scleroderma pathogenesis?
    Yamamoto T
    Arch Dermatol Res; 2006 Feb; 297(8):333-44. PubMed ID: 16402183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.