BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16237093)

  • 1. The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B*01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239.
    Loffredo JT; Sidney J; Piaskowski S; Szymanski A; Furlott J; Rudersdorf R; Reed J; Peters B; Hickman-Miller HD; Bardet W; Rehrauer WM; O'Connor DH; Wilson NA; Hildebrand WH; Sette A; Watkins DI
    J Immunol; 2005 Nov; 175(9):5986-97. PubMed ID: 16237093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition.
    Loffredo JT; Sidney J; Wojewoda C; Dodds E; Reynolds MR; Napoé G; Mothé BR; O'Connor DH; Wilson NA; Watkins DI; Sette A
    J Immunol; 2004 Oct; 173(8):5064-76. PubMed ID: 15470050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of MHC class I allele Mamu-A*07 during SIV(mac)239 infection.
    Reed JS; Sidney J; Piaskowski SM; Glidden CE; León EJ; Burwitz BJ; Kolar HL; Eernisse CM; Furlott JR; Maness NJ; Walsh AD; Rudersdorf RA; Bardet W; McMurtrey CP; O'Connor DH; Hildebrand WH; Sette A; Watkins DI; Wilson NA
    Immunogenetics; 2011 Dec; 63(12):789-807. PubMed ID: 21732180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins.
    Mothé BR; Sidney J; Dzuris JL; Liebl ME; Fuenger S; Watkins DI; Sette A
    J Immunol; 2002 Jul; 169(1):210-9. PubMed ID: 12077247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity.
    Loffredo JT; Sidney J; Bean AT; Beal DR; Bardet W; Wahl A; Hawkins OE; Piaskowski S; Wilson NA; Hildebrand WH; Watkins DI; Sette A
    J Immunol; 2009 Jun; 182(12):7763-75. PubMed ID: 19494300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus.
    Allen TM; Sidney J; del Guercio MF; Glickman RL; Lensmeyer GL; Wiebe DA; DeMars R; Pauza CD; Johnson RP; Sette A; Watkins DI
    J Immunol; 1998 Jun; 160(12):6062-71. PubMed ID: 9637523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD8(+) lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing.
    Allen TM; Mothé BR; Sidney J; Jing P; Dzuris JL; Liebl ME; Vogel TU; O'Connor DH; Wang X; Wussow MC; Thomson JA; Altman JD; Watkins DI; Sette A
    J Virol; 2001 Jan; 75(2):738-49. PubMed ID: 11134287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in
    Martins MA; Gonzalez-Nieto L; Shin YC; Domingues A; Gutman MJ; Maxwell HS; Magnani DM; Ricciardi MJ; Pedreño-Lopez N; Bailey VK; Altman JD; Parks CL; Allison DB; Ejima K; Rakasz EG; Capuano S; Desrosiers RC; Lifson JD; Watkins DI
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30541854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escape in one of two cytotoxic T-lymphocyte epitopes bound by a high-frequency major histocompatibility complex class I molecule, Mamu-A*02: a paradigm for virus evolution and persistence?
    Vogel TU; Friedrich TC; O'Connor DH; Rehrauer W; Dodds EJ; Hickman H; Hildebrand W; Sidney J; Sette A; Hughes A; Horton H; Vielhuber K; Rudersdorf R; De Souza IP; Reynolds MR; Allen TM; Wilson N; Watkins DI
    J Virol; 2002 Nov; 76(22):11623-36. PubMed ID: 12388723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication.
    Loffredo JT; Bean AT; Beal DR; León EJ; May GE; Piaskowski SM; Furlott JR; Reed J; Musani SK; Rakasz EG; Friedrich TC; Wilson NA; Allison DB; Watkins DI
    J Virol; 2008 Feb; 82(4):1723-38. PubMed ID: 18057253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection.
    Martins MA; Tully DC; Cruz MA; Power KA; Veloso de Santana MG; Bean DJ; Ogilvie CB; Gadgil R; Lima NS; Magnani DM; Ejima K; Allison DB; Piatak M; Altman JD; Parks CL; Rakasz EG; Capuano S; Galler R; Bonaldo MC; Lifson JD; Allen TM; Watkins DI
    J Virol; 2015 Nov; 89(21):10802-20. PubMed ID: 26292326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel simian immunodeficiency virus CTL epitopes restricted by MHC class I molecule Mamu-B*01 are highly conserved for long term in DNA/MVA-vaccinated, SHIV-challenged rhesus macaques.
    Su J; Luscher MA; Xiong Y; Rustam T; Amara RR; Rakasz E; Robinson HL; MacDonald KS
    Int Immunol; 2005 May; 17(5):637-48. PubMed ID: 15824066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First glimpse of the peptide presentation by rhesus macaque MHC class I: crystal structures of Mamu-A*01 complexed with two immunogenic SIV epitopes and insights into CTL escape.
    Chu F; Lou Z; Chen YW; Liu Y; Gao B; Zong L; Khan AH; Bell JI; Rao Z; Gao GF
    J Immunol; 2007 Jan; 178(2):944-52. PubMed ID: 17202356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity.
    Sette A; Sidney J; Bui HH; del Guercio MF; Alexander J; Loffredo J; Watkins DI; Mothé BR
    Immunogenetics; 2005 Apr; 57(1-2):53-68. PubMed ID: 15747117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes.
    Kaizu M; Borchardt GJ; Glidden CE; Fisk DL; Loffredo JT; Watkins DI; Rehrauer WM
    Immunogenetics; 2007 Sep; 59(9):693-703. PubMed ID: 17641886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection.
    Gooneratne SL; Alinejad-Rokny H; Ebrahimi D; Bohn PS; Wiseman RW; O'Connor DH; Davenport MP; Kent SJ
    J Virol; 2014 Dec; 88(24):14310-25. PubMed ID: 25275134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive immunological evaluation reveals surprisingly few differences between elite controller and progressor Mamu-B*17-positive simian immunodeficiency virus-infected rhesus macaques.
    Maness NJ; Yant LJ; Chung C; Loffredo JT; Friedrich TC; Piaskowski SM; Furlott J; May GE; Soma T; León EJ; Wilson NA; Piontkivska H; Hughes AL; Sidney J; Sette A; Watkins DI
    J Virol; 2008 Jun; 82(11):5245-54. PubMed ID: 18385251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of diverse peptide accommodation by the rhesus macaque MHC class I molecule Mamu-B*17: insights into immune protection from simian immunodeficiency virus.
    Wu Y; Gao F; Liu J; Qi J; Gostick E; Price DA; Gao GF
    J Immunol; 2011 Dec; 187(12):6382-92. PubMed ID: 22084443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of peptide binding to two common rhesus macaque major histocompatibility complex class II molecules.
    Dzuris JL; Sidney J; Horton H; Correa R; Carter D; Chesnut RW; Watkins DI; Sette A
    J Virol; 2001 Nov; 75(22):10958-68. PubMed ID: 11602736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection.
    Mothé BR; Horton H; Carter DK; Allen TM; Liebl ME; Skinner P; Vogel TU; Fuenger S; Vielhuber K; Rehrauer W; Wilson N; Franchini G; Altman JD; Haase A; Picker LJ; Allison DB; Watkins DI
    J Virol; 2002 Jan; 76(2):875-84. PubMed ID: 11752176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.