These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16237192)

  • 1. Dose-incidence relationships derived from superposition of distributions of individual susceptibility on mechanism-based dose responses for biological effects.
    Lutz WK; Lutz RW; Andersen ME
    Toxicol Sci; 2006 Mar; 90(1):33-8. PubMed ID: 16237192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-incidence modeling: consequences of linking quantal measures of response to depletion of critical tissue targets.
    Andersen ME; Lutz RW; Liao KH; Lutz WK
    Toxicol Sci; 2006 Jan; 89(1):331-7. PubMed ID: 16237194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response relationships in chemical carcinogenesis reflect differences in individual susceptibility. Consequences for cancer risk assessment, extrapolation, and prevention.
    Lutz WK
    Hum Exp Toxicol; 1999 Dec; 18(12):707-12. PubMed ID: 10627656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment.
    Conolly RB; Lutz WK
    Toxicol Sci; 2004 Jan; 77(1):151-7. PubMed ID: 14600281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormesis and high-risk groups.
    Calabrese EJ; Baldwin LA
    Regul Toxicol Pharmacol; 2002 Jun; 35(3):414-28. PubMed ID: 12202056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinearity and thresholds in dose-response relationships for carcinogenicity due to sampling variation, logarithmic dose scaling, or small differences in individual susceptibility.
    Lutz WK; Gaylor DW; Conolly RB; Lutz RW
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):565-9. PubMed ID: 15982698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hormetic dose-response model is more common than the threshold model in toxicology.
    Calabrese EJ; Baldwin LA
    Toxicol Sci; 2003 Feb; 71(2):246-50. PubMed ID: 12563110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Evolution of industrial toxicology toward vanishing doses and the human genome].
    Colombi A; Buratti M; Rubino FM; Giampiccolo R; Pulvirenti S; Brambilla G
    Med Lav; 2003; 94(1):69-82. PubMed ID: 12768958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in individual susceptibility to toxic effects of chemicals determine the dose-response relationship and consequences of setting exposure standards.
    Lutz WK
    Toxicol Lett; 2002 Feb; 126(3):155-8. PubMed ID: 11814700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critique of dose response in carcinogenesis.
    Waddell WJ
    Hum Exp Toxicol; 2006 Jul; 25(7):413-36. PubMed ID: 16898170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A procedure for developing risk-based reference doses.
    Gaylor DW; Kodell RL
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):137-41. PubMed ID: 12051999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological significance of DNA adducts investigated by simultaneous analysis of different endpoints of genotoxicity in L5178Y mouse lymphoma cells treated with methyl methanesulfonate.
    Brink A; Schulz B; Stopper H; Lutz WK
    Mutat Res; 2007 Dec; 625(1-2):94-101. PubMed ID: 17586535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation.
    Astrahan M
    Med Phys; 2008 Sep; 35(9):4161-72. PubMed ID: 18841869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating additional biological phenomena into two-stage cancer models.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Prog Clin Biol Res; 1994; 387():237-60. PubMed ID: 7972250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints.
    Sand S; von Rosen D; Victorin K; Filipsson AF
    Toxicol Sci; 2006 Mar; 90(1):241-51. PubMed ID: 16322076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The analysis of dose-response curve from bioassays with quantal response: Deterministic or statistical approaches?
    Mougabure-Cueto G; Sfara V
    Toxicol Lett; 2016 Apr; 248():46-51. PubMed ID: 26952004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically effective dose-response relationship for breast cancer treated by conservative surgery and postoperative radiotherapy.
    Plataniotis GA; Dale RG
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):512-7. PubMed ID: 19625139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of infusion rate on thiopental dose-response relationships. Assessment of a pharmacokinetic-pharmacodynamic model.
    Gentry WB; Krejcie TC; Henthorn TK; Shanks CA; Howard KA; Gupta DK; Avram MJ
    Anesthesiology; 1994 Aug; 81(2):316-24; discussion 25A. PubMed ID: 8053580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological bases for cancer dose-response extrapolation procedures.
    Wilson JD
    Environ Health Perspect; 1991 Jan; 90():293-6. PubMed ID: 2050075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold analysis of selected dose-response data for endocrine active chemicals.
    Blair RM; Fang H; Gaylor D; Sheehan DM
    APMIS; 2001 Mar; 109(3):198-208. PubMed ID: 11430497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.