BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 16237606)

  • 21. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China.
    Chen H; Yang X; Wang P; Wang Z; Li M; Zhao FJ
    Sci Total Environ; 2018 Oct; 639():271-277. PubMed ID: 29791880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study.
    Lv G; Wang H; Xu C; Shuai H; Luo Z; Zhang Q; Zhu H; Wang S; Zhu Q; Zhang Y; Huang D
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):9305-9313. PubMed ID: 30719674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution.
    Li K; Cao C; Ma Y; Su D; Li J
    Sci Total Environ; 2019 Nov; 692():1022-1028. PubMed ID: 31539934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study of efficiencies of purification of cadmium contaminated irrigation water by different purification systems.
    Wei X; Yang D; Yin X; Yang H; Fang Y; Chen N; Zhang H; Hu Z
    Sci Total Environ; 2024 Jan; 907():167941. PubMed ID: 37863222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils.
    Chen HP; Wang P; Chang JD; Kopittke PM; Zhao FJ
    Chemosphere; 2021 Mar; 267():128893. PubMed ID: 33176911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.
    Meharg AA; Rahman MM
    Environ Sci Technol; 2003 Jan; 37(2):229-34. PubMed ID: 12564892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia.
    Miller JR; Hudson-Edwards KA; Lechler PJ; Preston D; Macklin MG
    Sci Total Environ; 2004 Mar; 320(2-3):189-209. PubMed ID: 15016507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elemental composition of Malawian rice.
    Joy EJM; Louise Ander E; Broadley MR; Young SD; Chilimba ADC; Hamilton EM; Watts MJ
    Environ Geochem Health; 2017 Aug; 39(4):835-845. PubMed ID: 27438079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.
    Kosolsaksakul P; Oliver IW; Graham MC
    J Environ Manage; 2018 Jun; 215():49-56. PubMed ID: 29554627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.
    Chen D; Guo H; Li R; Li L; Pan G; Chang A; Joseph S
    Sci Total Environ; 2016 Jan; 541():1489-1498. PubMed ID: 26490528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.
    Yu HY; Ding X; Li F; Wang X; Zhang S; Yi J; Liu C; Xu X; Wang Q
    Environ Pollut; 2016 Aug; 215():258-265. PubMed ID: 27209244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cd and Zn accumulation in plants from the Padaeng zinc mine area.
    Phaenark C; Pokethitiyook P; Kruatrachue M; Ngernsansaruay C
    Int J Phytoremediation; 2009 Jul; 11(5):479-95. PubMed ID: 19810350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of irrigation water system's distribution on rice cadmium accumulation in large mild cadmium contaminated paddy field areas of Southwest China.
    Mou H; Chen W; Xue Z; Li Y; Ao T; Sun H
    Sci Total Environ; 2020 Dec; 746():141248. PubMed ID: 32745865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elevated cadmium concentrations in potato tubers due to irrigation with river water contaminated by mining in Potosí, Bolivia.
    Oporto C; Vandecasteele C; Smolders E
    J Environ Qual; 2007; 36(4):1181-6. PubMed ID: 17596627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar.
    Qaswar M; Hussain S; Rengel Z
    Sci Total Environ; 2017 Dec; 605-606():454-460. PubMed ID: 28672234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium contamination in a soil-rice system and the associated health risk: An addressing concern caused by barium mining.
    Lu Q; Xu Z; Xu X; Liu L; Liang L; Chen Z; Dong X; Li C; Wang Y; Qiu G
    Ecotoxicol Environ Saf; 2019 Nov; 183():109590. PubMed ID: 31509933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor.
    Yang Y; Wang M; Chen W; Li Y; Peng C
    J Agric Food Chem; 2017 Jul; 65(27):5463-5469. PubMed ID: 28635264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil.
    Shi J; Li L; Pan G
    J Environ Sci (China); 2009; 21(2):168-72. PubMed ID: 19402417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains.
    Honma T; Ohba H; Kaneko-Kadokura A; Makino T; Nakamura K; Katou H
    Environ Sci Technol; 2016 Apr; 50(8):4178-85. PubMed ID: 26999020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety.
    Rafiq MT; Aziz R; Yang X; Xiao W; Rafiq MK; Ali B; Li T
    Ecotoxicol Environ Saf; 2014 May; 103():101-7. PubMed ID: 24418797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.