These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16237948)

  • 1. Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids.
    Nedosekin DA; Proskurnin MA; Kononets MY
    Appl Opt; 2005 Oct; 44(29):6296-306. PubMed ID: 16237948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single and simple mathematical expression of the signal for cw-laser thermal lens spectrometry.
    Georges J
    Talanta; 1994 Dec; 41(12):2015-23. PubMed ID: 18966165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal-Lens-Induced Anomalous Solvent's effect on Fluorescence Produced by Two-Photon Continuous-Wave Laser Excitation.
    Fischer M; Tran CD
    Appl Opt; 2000 Nov; 39(33):6257-62. PubMed ID: 18354634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed laser excited photothermal lens spectrometry of CdSxSe(1-x) doped silica glasses.
    Joshi PR; Dada OO; Bialkowski SE
    Appl Spectrosc; 2009 Jul; 63(7):815-21. PubMed ID: 19589220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cw-laser thermal lens spectrometry in binary mixtures of water and organic solvents: composition dependence of the steady-state and time-resolved signals.
    Arnaud N; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1817-23. PubMed ID: 15248955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport in shock wave-compressed solids using pulsed laser heating.
    La Lone BM; Capelle G; Stevens GD; Turley WD; Veeser LR
    Rev Sci Instrum; 2014 Jul; 85(7):073903. PubMed ID: 25085148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved thermal mirror technique with top-hat cw laser excitation.
    Astrath FB; Astrath NG; Shen J; Zhou J; Malacarne LC; Pedreira PR; Baesso ML
    Opt Express; 2008 Aug; 16(16):12214-9. PubMed ID: 18679498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization.
    Malacarne LC; Astrath NG; Lukasievicz GV; Lenzi EK; Baesso ML; Bialkowski SE
    Appl Spectrosc; 2011 Jan; 65(1):99-104. PubMed ID: 21211159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous laser-excited photothermal spectrometry of CdSxSe1-x doped glasses.
    Dada OO; Jorgensen MR; Bialkowski SE
    Appl Spectrosc; 2007 Dec; 61(12):1373-8. PubMed ID: 18198031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity enhancement of thermal-lens spectrometry using laser-induced precipitation.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Anal Sci; 2009 May; 25(5):611-6. PubMed ID: 19430141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Investigation of Sample-Fluid Heat Coupling Effect in Thermal Lens Technique.
    Lukasievicz GVB; Herculano LS; Sehn E; Belançon MP; Bialkowski SE; Capeloto OA; Astrath NGC; Malacarne LC
    Appl Spectrosc; 2020 Oct; 74(10):1274-1279. PubMed ID: 32672058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon diffusion in microscale solids.
    Das A; Brown AK; Mah ML; Talghader JJ
    J Phys Condens Matter; 2019 Aug; 31(33):335703. PubMed ID: 31051485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.