These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 16238314)
1. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities. Izumi M; Wada K; Yuasa H; Hashimoto H J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of CMP-9''-modified-sialic acids as donor substrate analogues for mammalian and bacterial sialyltransferases. Kajihara Y; Kamitani T; Sato R; Kamei N; Miyazaki T; Okamoto R; Sakakibara T; Tsuji T; Yamamoto T Carbohydr Res; 2007 Sep; 342(12-13):1680-8. PubMed ID: 17572399 [TBL] [Abstract][Full Text] [Related]
3. Systematic syntheses and inhibitory activities of bisubstrate-type inhibitors of sialyltransferases. Hinou H; Sun XL; Ito Y J Org Chem; 2003 Jul; 68(14):5602-13. PubMed ID: 12839452 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of bisubstrate analogues targeting alpha-1,3-fucosyltransferase and their activities. Izumi M; Kaneko S; Yuasa H; Hashimoto H Org Biomol Chem; 2006 Feb; 4(4):681-90. PubMed ID: 16467942 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of flavonoids as sialyltransferase inhibitors. Hidari KI; Oyama K; Ito G; Nakayama M; Inai M; Goto S; Kanai Y; Watanabe K; Yoshida K; Furuta T; Kan T; Suzuki T Biochem Biophys Res Commun; 2009 May; 382(3):609-13. PubMed ID: 19303395 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Ni L; Chokhawala HA; Cao H; Henning R; Ng L; Huang S; Yu H; Chen X; Fisher AJ Biochemistry; 2007 May; 46(21):6288-98. PubMed ID: 17487984 [TBL] [Abstract][Full Text] [Related]
7. Sialyltransferase inhibition and recent advances. Wang L; Liu Y; Wu L; Sun XL Biochim Biophys Acta; 2016 Jan; 1864(1):143-53. PubMed ID: 26192491 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of a fluorescently tagged sialic acid analogue useful for live-cell imaging. Suzuki K; Ohtake A; Ito Y; Kanie O Chem Commun (Camb); 2012 Oct; 48(78):9744-6. PubMed ID: 22914432 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic study of CMP-Neu5Ac hydrolysis by α2,3-sialyltransferase from Pasteurella dagmatis. Schmölzer K; Luley-Goedl C; Czabany T; Ribitsch D; Schwab H; Weber H; Nidetzky B FEBS Lett; 2014 Aug; 588(17):2978-84. PubMed ID: 24945729 [TBL] [Abstract][Full Text] [Related]
10. Characterization of two glycolipid: alpha 2-3sialyltransferases, SAT-3 (CMP-NeuAc:nLcOse4Cer alpha 2-3sialyltransferase) and SAT-4 (CMP-NeuAc:GgOse4Cer alpha 2-3sialyltransferase), from human colon carcinoma (Colo 205) cell line. Basu SS; Basu M; Li Z; Basu S Biochemistry; 1996 Apr; 35(16):5166-74. PubMed ID: 8611500 [TBL] [Abstract][Full Text] [Related]
11. Potential sialyltransferase inhibitors based on neuraminyl substitution by hetaryl rings. Mathew B; Schmidt RR Carbohydr Res; 2007 Feb; 342(3-4):558-66. PubMed ID: 16989791 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase by nucleotides, nucleotide sugars and nucleotide dialdehydes. Cambron LD; Leskawa KC Biochem Biophys Res Commun; 1993 Jun; 193(2):585-90. PubMed ID: 8512559 [TBL] [Abstract][Full Text] [Related]
13. Highly Substituted Cyclopentane-CMP Conjugates as Potent Sialyltransferase Inhibitors. Li W; Niu Y; Xiong DC; Cao X; Ye XS J Med Chem; 2015 Oct; 58(20):7972-90. PubMed ID: 26406919 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid. Watson DC; Leclerc S; Wakarchuk WW; Young NM Glycobiology; 2011 Jan; 21(1):99-108. PubMed ID: 20978010 [TBL] [Abstract][Full Text] [Related]
15. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Chiu CP; Watts AG; Lairson LL; Gilbert M; Lim D; Wakarchuk WW; Withers SG; Strynadka NC Nat Struct Mol Biol; 2004 Feb; 11(2):163-70. PubMed ID: 14730352 [TBL] [Abstract][Full Text] [Related]
16. Production of cytidine 5'-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Lee SG; Lee JO; Yi JK; Kim BG Biotechnol Bioeng; 2002 Dec; 80(5):516-24. PubMed ID: 12355462 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Bacterial α(2,6)-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate. Kang JY; Lim SJ; Kwon O; Lee SG; Kim HH; Oh DB PLoS One; 2015; 10(7):e0133739. PubMed ID: 26231036 [TBL] [Abstract][Full Text] [Related]
19. A recombinant α-(2→3)-sialyltransferase with an extremely broad acceptor substrate specificity from Photobacterium sp. JT-ISH-224 can transfer N-acetylneuraminic acid to inositols. Mine T; Miyazaki T; Kajiwara H; Tateda N; Ajisaka K; Yamamoto T Carbohydr Res; 2010 Nov; 345(17):2485-90. PubMed ID: 20947069 [TBL] [Abstract][Full Text] [Related]
20. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors. Chang KH; Lee L; Chen J; Li WS Chem Commun (Camb); 2006 Feb; (6):629-31. PubMed ID: 16446832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]