These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 16238384)
1. Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. Frediani L; Agren H; Ferrighi L; Ruud K J Chem Phys; 2005 Oct; 123(14):144117. PubMed ID: 16238384 [TBL] [Abstract][Full Text] [Related]
2. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model. Ferrighi L; Frediani L; Ruud K J Chem Phys; 2010 Jan; 132(2):024107. PubMed ID: 20095663 [TBL] [Abstract][Full Text] [Related]
3. Gauge-origin-independent magnetizabilities of solvated molecules using the polarizable continuum model. Ferrighi L; Marchesan D; Ruud K; Frediani L; Coriani S J Chem Phys; 2005 Nov; 123(20):204104. PubMed ID: 16351237 [TBL] [Abstract][Full Text] [Related]
4. Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. Kongsted J; Osted A; Mikkelsen KV; Christiansen O J Chem Phys; 2004 Feb; 120(8):3787-98. PubMed ID: 15268543 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear response theory with relaxation: the first-order hyperpolarizability. Norman P; Bishop DM; Jensen HJ; Oddershede J J Chem Phys; 2005 Nov; 123(19):194103. PubMed ID: 16321072 [TBL] [Abstract][Full Text] [Related]
6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
7. Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. Ferrighi L; Frediani L; Ruud K J Phys Chem B; 2007 Aug; 111(30):8965-73. PubMed ID: 17628096 [TBL] [Abstract][Full Text] [Related]
8. Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis. Ye A; Autschbach J J Chem Phys; 2006 Dec; 125(23):234101. PubMed ID: 17190541 [TBL] [Abstract][Full Text] [Related]
9. Parallelization of the integral equation formulation of the polarizable continuum model for higher-order response functions. Ferrighi L; Frediani L; Fossgaard E; Ruud K J Chem Phys; 2006 Oct; 125(15):154112. PubMed ID: 17059244 [TBL] [Abstract][Full Text] [Related]
10. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents. Guthmuller J; Champagne B J Chem Phys; 2007 Oct; 127(16):164507. PubMed ID: 17979360 [TBL] [Abstract][Full Text] [Related]
11. Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. Nielsen CB; Christiansen O; Mikkelsen KV; Kongsted J J Chem Phys; 2007 Apr; 126(15):154112. PubMed ID: 17461619 [TBL] [Abstract][Full Text] [Related]
12. Water solvent effect on the first hyperpolarizability of p-nitrophenol and p-nitrophenylphosphate: a time-dependent density functional study. Guthmuller J; Simon D J Chem Phys; 2006 May; 124(17):174502. PubMed ID: 16689578 [TBL] [Abstract][Full Text] [Related]
13. The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: a quantum mechanical/molecular mechanics study. Jensen L; van Duijnen PT J Chem Phys; 2005 Aug; 123(7):074307. PubMed ID: 16229570 [TBL] [Abstract][Full Text] [Related]
14. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. Cammi R J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924 [TBL] [Abstract][Full Text] [Related]
15. Quadratic response functions in the time-dependent four-component Hartree-Fock approximation. Norman P; Jensen HJ J Chem Phys; 2004 Oct; 121(13):6145-54. PubMed ID: 15446908 [TBL] [Abstract][Full Text] [Related]
16. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. I. Molecular polarizabilities and hyperpolarizabilities. Reis H; Grzybowski A; Papadopoulos MG J Phys Chem A; 2005 Nov; 109(44):10106-20. PubMed ID: 16838931 [TBL] [Abstract][Full Text] [Related]
17. Electronic g-tensors of solvated molecules using the polarizable continuum model. Rinkevicius Z; Telyatnyk L; Vahtras O; Ruud K J Chem Phys; 2004 Sep; 121(11):5051-60. PubMed ID: 15352795 [TBL] [Abstract][Full Text] [Related]
18. Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives. Silva DL; Fonseca RD; Vivas MG; Ishow E; Canuto S; Mendonca CR; De Boni L J Chem Phys; 2015 Feb; 142(6):064312. PubMed ID: 25681911 [TBL] [Abstract][Full Text] [Related]
19. Towards an accurate description of anharmonic infrared spectra in solution within the polarizable continuum model: reaction field, cavity field and nonequilibrium effects. Cappelli C; Lipparini F; Bloino J; Barone V J Chem Phys; 2011 Sep; 135(10):104505. PubMed ID: 21932908 [TBL] [Abstract][Full Text] [Related]
20. How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models. Kongsted J; Mennucci B J Phys Chem A; 2007 Oct; 111(39):9890-900. PubMed ID: 17845016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]