BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16238427)

  • 1. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I. Mimicking protein dynamics in different time scales.
    Alakent B; Camurdan MC; Doruker P
    J Chem Phys; 2005 Oct; 123(14):144910. PubMed ID: 16238427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects.
    Alakent B; Camurdan MC; Doruker P
    J Chem Phys; 2005 Oct; 123(14):144911. PubMed ID: 16238428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.
    Alakent B; Doruker P; Camurdan MC
    J Chem Phys; 2004 Sep; 121(10):4759-69. PubMed ID: 15332910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational dynamics of cytochrome c: correlation to hydrogen exchange.
    García AE; Hummer G
    Proteins; 1999 Aug; 36(2):175-91. PubMed ID: 10398365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time series analysis of collective motions in proteins.
    Alakent B; Doruker P; Camurdan MC
    J Chem Phys; 2004 Jan; 120(2):1072-88. PubMed ID: 15267944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory.
    Troyer JM; Cohen FE
    Proteins; 1995 Sep; 23(1):97-110. PubMed ID: 8539254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration dynamics and time scales of coupled water-protein fluctuations.
    Li T; Hassanali AA; Kao YT; Zhong D; Singer SJ
    J Am Chem Soc; 2007 Mar; 129(11):3376-82. PubMed ID: 17319669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents.
    Lubchenko V; Wolynes PG; Frauenfelder H
    J Phys Chem B; 2005 Apr; 109(15):7488-99. PubMed ID: 16851860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.
    Maisuradze GG; Leitner DM
    Proteins; 2007 May; 67(3):569-78. PubMed ID: 17348026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water penetration and escape in proteins.
    García AE; Hummer G
    Proteins; 2000 Feb; 38(3):261-72. PubMed ID: 10713987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation.
    Macek P; Novak P; Zídek L; Sklenar V
    J Phys Chem B; 2007 May; 111(20):5731-9. PubMed ID: 17465536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis.
    Altis A; Otten M; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2008 Jun; 128(24):245102. PubMed ID: 18601386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis.
    Hayward S; Kitao A; Go N
    Proteins; 1995 Oct; 23(2):177-86. PubMed ID: 8592699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the free energy landscape of the FBP28WW domain using multiple techniques.
    Periole X; Allen LR; Tamiola K; Mark AE; Paci E
    J Comput Chem; 2009 May; 30(7):1059-68. PubMed ID: 18942730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of solvent on collective motions in globular protein.
    Hayward S; Kitao A; Hirata F; Go N
    J Mol Biol; 1993 Dec; 234(4):1207-17. PubMed ID: 7505336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy.
    Markwick PR; Bouvignies G; Blackledge M
    J Am Chem Soc; 2007 Apr; 129(15):4724-30. PubMed ID: 17375925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of accurate protein loop conformations through low-barrier molecular dynamics.
    Hornak V; Simmerling C
    Proteins; 2003 Jun; 51(4):577-90. PubMed ID: 12784217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.