BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16238434)

  • 1. Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2005 Oct; 123(14):144917. PubMed ID: 16238434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COAST: Controllable approximative stochastic reaction algorithm.
    Wagner H; Möller M; Prank K
    J Chem Phys; 2006 Nov; 125(17):174104. PubMed ID: 17100426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legitimacy of the stochastic Michaelis-Menten approximation.
    Sanft KR; Gillespie DT; Petzold LR
    IET Syst Biol; 2011 Jan; 5(1):58. PubMed ID: 21261403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A partial-propensity variant of the composition-rejection stochastic simulation algorithm for chemical reaction networks.
    Ramaswamy R; Sbalzarini IF
    J Chem Phys; 2010 Jan; 132(4):044102. PubMed ID: 20113014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior.
    McCollum JM; Peterson GD; Cox CD; Simpson ML; Samatova NF
    Comput Biol Chem; 2006 Feb; 30(1):39-49. PubMed ID: 16321569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
    Ramaswamy R; González-Segredo N; Sbalzarini IF
    J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic simulation of chemical kinetics.
    Gillespie DT
    Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.
    Goutsias J
    J Chem Phys; 2005 May; 122(18):184102. PubMed ID: 15918689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A full stochastic description of the Michaelis-Menten reaction for small systems.
    Arányi P; Tóth J
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional numerical approach to investigate the substrate transport and conversion in an immobilized enzyme reactor.
    Esterl S; Ozmutlu O; Hartmann C; Delgado A
    Biotechnol Bioeng; 2003 Sep; 83(7):780-9. PubMed ID: 12889018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme catalyzed reactions: from experiment to computational mechanism reconstruction.
    Srividhya J; Mourão MA; Crampin EJ; Schnell S
    Comput Biol Chem; 2010 Feb; 34(1):11-8. PubMed ID: 19945917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated stochastic simulation algorithm for coupled chemical reactions with delays.
    Zhou W; Peng X; Yan Z; Wang Y
    Comput Biol Chem; 2008 Aug; 32(4):240-2. PubMed ID: 18467179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for simulating the dynamics of complex biological processes.
    Schilstra MJ; Martin SR; Keating SM
    Methods Cell Biol; 2008; 84():807-42. PubMed ID: 17964950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient exact and K-skip methods for stochastic simulation of coupled chemical reactions.
    Cai X; Wen J
    J Chem Phys; 2009 Aug; 131(6):064108. PubMed ID: 19691379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.