These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16238448)

  • 1. Effect of multiple ionization on the yield of H2O2 produced in the radiolysis of aqueous 0.4 M H2SO4 solutions by high-LET 12C6+ and 20Ne9+ ions.
    Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2005 Nov; 164(5):688-94. PubMed ID: 16238448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization.
    Meesungnoen J; Jay-Gerin JP
    J Phys Chem A; 2005 Jul; 109(29):6406-19. PubMed ID: 16833985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3-6.5 keV/micrometer: application to 137Cs gamma rays.
    Meesungnoen J; Benrahmoune M; Filali-Mouhim A; Mankhetkorn S; Jay-Gerin JP
    Radiat Res; 2001 Feb; 155(2):269-78. PubMed ID: 11175661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water radiolysis with heavy ions of energies up to 28 GeV. 3. Measurement of G(MV*+) in deaerated methyl viologen solutions containing various concentrations of sodium formate and Monte Carlo simulation.
    Yamashita S; Katsumura Y; Lin M; Muroya Y; Miyazaki T; Murakami T; Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2008 Oct; 170(4):521-33. PubMed ID: 19024659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.
    Kohan LM; Meesungnoen J; Sanguanmith S; Meesat R; Jay-Gerin JP
    Radiat Res; 2014 May; 181(5):495-502. PubMed ID: 24754561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-LET ion radiolysis of water: oxygen production in tracks.
    Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2009 Mar; 171(3):379-86. PubMed ID: 19267566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
    Peukert D; Incerti S; Kempson I; Douglass M; Karamitros M; Baldacchino G; Bezak E
    Med Phys; 2019 Feb; 46(2):983-998. PubMed ID: 30536689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-LET ion radiolysis of water: visualization of the formation and evolution of ion tracks and relevance to the radiation-induced bystander effect.
    Muroya Y; Plante I; Azzam EI; Meesungnoen J; Katsumura Y; Jay-Gerin JP
    Radiat Res; 2006 Apr; 165(4):485-91. PubMed ID: 16579662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the Fricke dosimeter and spur expansion time in the low-LET high-temperature radiolysis of water up to 350 °C: a Monte-Carlo simulation study.
    Sanguanmith S; Muroya Y; Tippayamontri T; Meesungnoen J; Lin M; Katsumura Y; Jay-Gerin JP
    Phys Chem Chem Phys; 2011 Jun; 13(22):10690-8. PubMed ID: 21552602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S; Nikjoo H
    J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Production of superoxide radicals with pulse radiolysis of water with high linear energy transfer].
    Baldacchino G; Trupin-Wasselin V; Bouffard S; Balanzat E; Gardès-Albert M; Abedinzadeh Z; Jore D; Deycard S; Hickel B
    Can J Physiol Pharmacol; 2001 Feb; 79(2):180-3. PubMed ID: 11235673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
    Ramos-Méndez J; Perl J; Schuemann J; McNamara A; Paganetti H; Faddegon B
    Phys Med Biol; 2018 May; 63(10):105014. PubMed ID: 29697057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4-DNA.
    Baba K; Kusumoto T; Okada S; Ogawara R; Kodaira S; Raffy Q; Barillon R; Ludwig N; Galindo C; Peaupardin P; Ishikawa M
    Sci Rep; 2021 Jan; 11(1):1524. PubMed ID: 33452450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monte Carlo code for the simulation of heavy-ion tracks in water.
    Champion C; L'hoir A; Politis MF; Fainstein PD; Rivarola RD; Chetioui A
    Radiat Res; 2005 Feb; 163(2):222-31. PubMed ID: 15658899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the spur lifetime and its temperature dependence in the low linear energy transfer radiolysis of water.
    Sanguanmith S; Meesungnoen J; Muroya Y; Lin M; Katsumura Y; Jay-Gerin JP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16731-6. PubMed ID: 23138332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of LET on oxygen-dependent and-independent generation of hydrogen peroxide in water irradiated by carbon-ion beams.
    Matsumoto KI; Ueno M; Nyui M; Shoji Y; Nakanishi I
    Free Radic Res; 2021 Jun; 55(6):714-719. PubMed ID: 34519601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the yields for the primary species formed from the radiolysis of liquid water by fast neutrons at temperatures between 25-350°C.
    Butarbutar SL; Sanguanmith S; Meesungnoen J; Sunaryo GR; Jay-Gerin JP
    Radiat Res; 2014 Jun; 181(6):659-65. PubMed ID: 24828113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-radiolysis of tritiated water. 4. The scavenging effect of azide ions (N
    Sanguanmith S; Meesungnoen J; Stuart CR; Causey P; Jay-Gerin JP
    RSC Adv; 2018 Jan; 8(5):2449-2458. PubMed ID: 35541471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation.
    Kreipl MS; Friedland W; Paretzke HG
    Radiat Environ Biophys; 2009 Feb; 48(1):11-20. PubMed ID: 18949480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inactivation of papain by high LET radiations.
    Bisby RH; Cundall RB; Sims HE; Burns WG
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Sep; 46(3):261-8. PubMed ID: 6333408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.