These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16238619)

  • 21. The biochemistry of methane oxidation.
    Hakemian AS; Rosenzweig AC
    Annu Rev Biochem; 2007; 76():223-41. PubMed ID: 17328677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2.
    Chen Y; Crombie A; Rahman MT; Dedysh SN; Liesack W; Stott MB; Alam M; Theisen AR; Murrell JC; Dunfield PF
    J Bacteriol; 2010 Jul; 192(14):3840-1. PubMed ID: 20472789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis.
    Gou Z; Xing XH; Luo M; Jiang H; Han B; Wu H; Wang L; Zhang F
    FEMS Microbiol Lett; 2006 Oct; 263(2):136-41. PubMed ID: 16978347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane.
    Lieberman RL; Rosenzweig AC
    Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylocella species are facultatively methanotrophic.
    Dedysh SN; Knief C; Dunfield PF
    J Bacteriol; 2005 Jul; 187(13):4665-70. PubMed ID: 15968078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol.
    Yu Y; Ramsay JA; Ramsay BA
    J Biotechnol; 2009 Jan; 139(1):78-83. PubMed ID: 18955091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome Scale Metabolic Model of the versatile methanotroph Methylocella silvestris.
    Bordel S; Crombie AT; Muñoz R; Murrell JC
    Microb Cell Fact; 2020 Jul; 19(1):144. PubMed ID: 32677952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of allylthiourea to produce soluble methane monooxygenase in the presence of copper.
    Yu Y; Ramsay JA; Ramsay BA
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):333-9. PubMed ID: 19107472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE.
    Hazen TC; Chakraborty R; Fleming JM; Gregory IR; Bowman JP; Jimenez L; Zhang D; Pfiffner SM; Brockman FJ; Sayler GS
    Arch Microbiol; 2009 Mar; 191(3):221-32. PubMed ID: 19034430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species.
    Brzostowicz PC; Walters DM; Jackson RE; Halsey KH; Ni H; Rouvière PE
    Environ Microbiol; 2005 Feb; 7(2):179-90. PubMed ID: 15658985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps.
    Farhan Ul Haque M; Crombie AT; Murrell JC
    Microbiome; 2019 Oct; 7(1):134. PubMed ID: 31585550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath).
    Kitmitto A; Myronova N; Basu P; Dalton H
    Biochemistry; 2005 Aug; 44(33):10954-65. PubMed ID: 16101279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase.
    Balasubramanian R; Rosenzweig AC
    Acc Chem Res; 2007 Jul; 40(7):573-80. PubMed ID: 17444606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath).
    Myronova N; Kitmitto A; Collins RF; Miyaji A; Dalton H
    Biochemistry; 2006 Oct; 45(39):11905-14. PubMed ID: 17002291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular biology and regulation of methane monooxygenase.
    Murrell JC; Gilbert B; McDonald IR
    Arch Microbiol; 2000; 173(5-6):325-32. PubMed ID: 10896210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of individual copies of Methylococcus capsulatus bath particulate methane monooxygenase genes.
    Stolyar S; Franke M; Lidstrom ME
    J Bacteriol; 2001 Mar; 183(5):1810-2. PubMed ID: 11160118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis.
    Tamas I; Smirnova AV; He Z; Dunfield PF
    ISME J; 2014 Feb; 8(2):369-82. PubMed ID: 23985741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases.
    Larsen Ø; Karlsen OA
    Microbiologyopen; 2016 Apr; 5(2):254-67. PubMed ID: 26687591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel methanotroph diversity evidenced by molecular characterization of particulate methane monooxygenase A (pmoA) genes in a biogas reactor.
    Rastogi G; Ranade DR; Yeole TY; Gupta AK; Patole MS; Shouche YS
    Microbiol Res; 2009; 164(5):536-44. PubMed ID: 17601713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.
    Chen Y; Dumont MG; Cébron A; Murrell JC
    Environ Microbiol; 2007 Nov; 9(11):2855-69. PubMed ID: 17922768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.