These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16238648)

  • 1. Growth and pectate-lyase activity of the ruminal bacterium Lachnospira multiparus in the presence of short-chain organic acids.
    Paggi RA; Rodríguez C; Fay JP
    Lett Appl Microbiol; 2005; 41(5):434-9. PubMed ID: 16238648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus.
    Dusková D; Marounek M
    Lett Appl Microbiol; 2001 Aug; 33(2):159-63. PubMed ID: 11472526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polygalacturonate lyase produced by Lachnospira multiparus isolated from the bovine rumen.
    Wojciechowicz M; Heinrichova K; Ziołecki A
    J Gen Microbiol; 1980 Mar; 117(1):193-9. PubMed ID: 7391818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of utilization of pectins from various sources by pure cultures of pectinolytic rumen bacteria and mixed cultures of rumen microorganisms.
    Kasperowicz A
    Acta Microbiol Pol; 1994; 43(1):47-56. PubMed ID: 7526615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An exopectate lyase of Butyrivibrio fibrisolvens from the bovine rumen.
    Wojciechowicz M; Heinrichova K; Ziołecki A
    J Gen Microbiol; 1982 Nov; 128(11):2661-5. PubMed ID: 7153760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A note on the fermentation of pectin by pure strains and combined cultures of rumen bacteria.
    Szymański PT
    Acta Microbiol Pol; 1981; 30(2):159-63. PubMed ID: 6168176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of short-chain acids on the carboxymethylcellulase activity of the ruminal bacterium Ruminococcus albus.
    Paggi RA; Fay JP
    Folia Microbiol (Praha); 2004; 49(4):479-83. PubMed ID: 15530016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of forage chicory by ruminal fibrolytic bacteria.
    Sun XZ; Joblin KN; Andrew IG; Hoskin SO; Harris PJ
    J Appl Microbiol; 2008 Nov; 105(5):1286-97. PubMed ID: 18713292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruminal lactic acidosis: forestomach epithelial receptor activation by undissociated volatile fatty acids and rumen fluids collected during loss of reticuloruminal motility.
    Crichlow EC
    Res Vet Sci; 1988 Nov; 45(3):364-8. PubMed ID: 3212284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers.
    Moya D; Calsamiglia S; Ferret A; Blanch M; Fandiño JI; Castillejos L; Yoon I
    J Anim Sci; 2009 Sep; 87(9):2874-81. PubMed ID: 19542509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH.
    Calsamiglia S; Cardozo PW; Ferret A; Bach A
    J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms.
    Fellner V; Burns JC; Marshall DS
    J Dairy Sci; 2008 May; 91(5):1936-41. PubMed ID: 18420625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials.
    Goel G; Makkar HP; Becker K
    J Appl Microbiol; 2008 Sep; 105(3):770-7. PubMed ID: 18422554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes.
    Hall MB; Weimer PJ
    J Anim Sci; 2007 Jun; 85(6):1467-78. PubMed ID: 17296769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum.
    Fox JT; Drouillard JS; Shi X; Nagaraja TG
    J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant.
    Anderson RC; Krueger NA; Stanton TB; Callaway TR; Edrington TS; Harvey RB; Jung YS; Nisbet DJ
    Bioresour Technol; 2008 Dec; 99(18):8655-61. PubMed ID: 18538564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectin-fermenting bacteria isolated from the bovine rumen.
    Dehority BA
    J Bacteriol; 1969 Jul; 99(1):189-96. PubMed ID: 5802604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruminal biohydrogenation as affected by tannins in vitro.
    Vasta V; Makkar HP; Mele M; Priolo A
    Br J Nutr; 2009 Jul; 102(1):82-92. PubMed ID: 19063768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.