BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16239067)

  • 1. Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil.
    Ortiz I; Velasco A; Revah S
    J Hazard Mater; 2006 Apr; 131(1-3):112-7. PubMed ID: 16239067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass transfer and hydrocarbon biodegradation of aged soil in slurry phase.
    García-Rivero M; Saucedo-Castañeda G; Flores De Hoyos S; Gutiérrez-Rojas M
    Biotechnol Prog; 2002; 18(4):728-33. PubMed ID: 12153305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing phenanthrene biomineralization in a polluted soil using gaseous toluene as a cosubstrate.
    Ortiz I; Auria R; Sigoillot JC; Revah S
    Environ Sci Technol; 2003 Feb; 37(4):805-10. PubMed ID: 12636283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous growth on citrate reduces the effects of iron limitation during toluene degradation in Pseudomonas.
    Dinkla IJ; Janssen DB
    Microb Ecol; 2003 Jan; 45(1):97-107. PubMed ID: 12415420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.
    Cowie BR; Greenberg BM; Slater GF
    Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils.
    Perfumo A; Banat IM; Marchant R; Vezzulli L
    Chemosphere; 2007 Jan; 66(1):179-84. PubMed ID: 16782171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates.
    Chablain PA; Philippe G; Groboillot A; Truffaut N; Guespin-Michel JF
    Res Microbiol; 1997 Feb; 148(2):153-61. PubMed ID: 9765796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.
    Okieimen CO; Okieimen FE
    Environ Sci; 2005; 12(1):1-8. PubMed ID: 15793556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity.
    Marin JA; Hernandez T; Garcia C
    Environ Res; 2005 Jun; 98(2):185-95. PubMed ID: 15820724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels.
    Al-Mutairi N; Bufarsan A; Al-Rukaibi F
    Chemosphere; 2008 Dec; 74(1):142-8. PubMed ID: 18824252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation.
    Del Panno MT; Morelli IS; Engelen B; Berthe-Corti L
    FEMS Microbiol Ecol; 2005 Jul; 53(2):305-16. PubMed ID: 16329950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biostimulation of micro-organisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil.
    Pèrez-Armendáriz B; Loera-Corral O; Fernández-Linares L; Esparza-García F; Rodríguez-Vázquez R
    Lett Appl Microbiol; 2004; 38(5):373-7. PubMed ID: 15059206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil.
    Płaza G; Nałecz-Jawecki G; Ulfig K; Brigmon RL
    Ecotoxicol Environ Saf; 2005 Nov; 62(3):415-20. PubMed ID: 16216636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.
    Kang SW; Kim YB; Shin JD; Kim EK
    Appl Biochem Biotechnol; 2010 Mar; 160(3):780-90. PubMed ID: 19253005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects.
    Calvo C; Manzanera M; Silva-Castro GA; Uad I; González-López J
    Sci Total Environ; 2009 Jun; 407(12):3634-40. PubMed ID: 18722001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments.
    Ros M; Rodríguez I; García C; Hernández T
    Bioresour Technol; 2010 Sep; 101(18):6916-23. PubMed ID: 20413304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties.
    Tejada M; Gonzalez JL; Hernandez MT; Garcia C
    Bioresour Technol; 2008 May; 99(8):2872-80. PubMed ID: 17662598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation.
    Sarkar D; Ferguson M; Datta R; Birnbaum S
    Environ Pollut; 2005 Jul; 136(1):187-95. PubMed ID: 15809120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.