These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1623943)

  • 21. Amelioration of retinal photic injury by a combination of flunarizine and dimethylthiourea.
    Li J; Edward DP; Lam TT; Tso MO
    Exp Eye Res; 1993 Jan; 56(1):71-8. PubMed ID: 8432337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steroids do not prevent photoreceptor degeneration in the light-exposed T4R rhodopsin mutant dog retina irrespective of AP-1 inhibition.
    Gu D; Beltran WA; Pearce-Kelling S; Li Z; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3482-94. PubMed ID: 19234347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury.
    Chang CJ; Cherng CH; Liou WS; Liao CL
    Ophthalmic Res; 2005; 37(4):202-13. PubMed ID: 15990464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light history and age-related changes in retinal light damage.
    Organisciak DT; Darrow RM; Barsalou L; Darrow RA; Kutty RK; Kutty G; Wiggert B
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1107-16. PubMed ID: 9620069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bright environmental light accelerates rhodopsin depletion in retinoid-deprived rats.
    Katz ML; Stientjes HJ; Gao CL; Norberg M
    Invest Ophthalmol Vis Sci; 1993 May; 34(6):2000-8. PubMed ID: 8491550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration.
    Zhang C; Lei B; Lam TT; Yang F; Sinha D; Tso MO
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2753-9. PubMed ID: 15277501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue transglutaminase in apoptosis of photoreceptor cells in rat retina.
    Zhang SR; Li SH; Abler A; Fu J; Tso MO; Lam TT
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1793-9. PubMed ID: 8759346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian-dependent retinal light damage in rats.
    Organisciak DT; Darrow RM; Barsalou L; Kutty RK; Wiggert B
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3694-701. PubMed ID: 11053264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical characterization of cell specific enzymes in light-exposed rat retinas: oxidative loss of all-trans retinol dehydrogenase activity.
    Darrow RA; Darrow RM; Organisciak DT
    Curr Eye Res; 1997 Feb; 16(2):144-51. PubMed ID: 9068945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease.
    White DA; Fritz JJ; Hauswirth WW; Kaushal S; Lewin AS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1942-51. PubMed ID: 17460245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of enzymes by short-wave optical radiation and its effect on the retina.
    Chen E
    Acta Ophthalmol Suppl (1985); 1993; (208):1-50. PubMed ID: 8384503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperthermia accelerates retinal light damage in rats.
    Organisciak DT; Darrow RM; Noell WK; Blanks JC
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):997-1008. PubMed ID: 7730034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study.
    Li ZY; Tso MO; Wang HM; Organisciak DT
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1589-98. PubMed ID: 4055291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C57BL/6J-vit/vit mouse model of retinal degeneration: light microscopic analysis and evaluation of rhodopsin levels.
    Smith SB
    Exp Eye Res; 1992 Dec; 55(6):903-10. PubMed ID: 1486944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of L-and D-ascorbic acid administration on retinal tissue levels and light damage in rats.
    Organisciak DT; Bicknell IR; Darrow RM
    Curr Eye Res; 1992 Mar; 11(3):231-41. PubMed ID: 1587146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat.
    Faktorovich EG; Steinberg RH; Yasumura D; Matthes MT; LaVail MM
    J Neurosci; 1992 Sep; 12(9):3554-67. PubMed ID: 1527595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphologic comparisons between rhodopsin-mediated and short-wavelength classes of retinal light damage.
    Rapp LM; Smith SC
    Invest Ophthalmol Vis Sci; 1992 Nov; 33(12):3367-77. PubMed ID: 1428709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Desferrioxamine ameliorates retinal photic injury in albino rats.
    Li ZL; Lam S; Tso MO
    Curr Eye Res; 1991 Feb; 10(2):133-44. PubMed ID: 2036805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.