These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 1623956)
1. Spectroscopic studies on the interaction of calf lens membranes with crystallins. Liang JJ; Li XY Exp Eye Res; 1992 May; 54(5):719-24. PubMed ID: 1623956 [TBL] [Abstract][Full Text] [Related]
2. Interaction of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid with alpha-crystallin. Sharma KK; Kaur H; Kumar GS; Kester K J Biol Chem; 1998 Apr; 273(15):8965-70. PubMed ID: 9535881 [TBL] [Abstract][Full Text] [Related]
3. Functional and structural studies of alpha-crystallin from galactosemic rat lenses. Huang FY; Ho Y; Shaw TS; Chuang SA Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586 [TBL] [Abstract][Full Text] [Related]
4. Interaction and aggregation of lens crystallins. Liang JN; Li XY Exp Eye Res; 1991 Jul; 53(1):61-6. PubMed ID: 1879503 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic study on the effects of nonenzymatic glycation in human alpha-crystallin. Liang JN; Chylack LT Invest Ophthalmol Vis Sci; 1987 May; 28(5):790-4. PubMed ID: 3570690 [TBL] [Abstract][Full Text] [Related]
6. Heat-induced conformational change of human lens recombinant alphaA- and alphaB-crystallins. Liang JJ; Sun TX; Akhtar NJ Mol Vis; 2000 Mar; 6():10-4. PubMed ID: 10706895 [TBL] [Abstract][Full Text] [Related]
7. Binding capacity of alpha-crystallin to bovine lens lipids. Borchman D; Tang D Exp Eye Res; 1996 Oct; 63(4):407-10. PubMed ID: 8944547 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence studies on the age related changes in bovine and human lens membrane structure. Liang JN; Rossi MR; Andley UP Curr Eye Res; 1989 Mar; 8(3):293-8. PubMed ID: 2707045 [TBL] [Abstract][Full Text] [Related]
9. Age-related changes in protein conformation in bovine lens crystallins. Liang JN; Bose SK; Chakrabarti B Exp Eye Res; 1985 Mar; 40(3):461-9. PubMed ID: 4065237 [TBL] [Abstract][Full Text] [Related]
10. Heat-induced conformational change and increased chaperone activity of lens alpha-crystallin. Das BK; Liang JJ; Chakrabarti B Curr Eye Res; 1997 Apr; 16(4):303-9. PubMed ID: 9134318 [TBL] [Abstract][Full Text] [Related]
11. Temperature induced structural changes of beta-crystallin and sphingomyelin binding. Tang D; Borchman D Exp Eye Res; 1998 Jul; 67(1):113-8. PubMed ID: 9702184 [TBL] [Abstract][Full Text] [Related]
12. Influence of cholesterol on the interaction of alpha-crystallin with phospholipids. Tang D; Borchman D; Yappert MC; Cenedella RJ Exp Eye Res; 1998 May; 66(5):559-67. PubMed ID: 9628803 [TBL] [Abstract][Full Text] [Related]
13. Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells. Liu BF; Liang JJ J Cell Biochem; 2008 May; 104(1):51-8. PubMed ID: 18004741 [TBL] [Abstract][Full Text] [Related]
14. Degradation of C-terminal truncated alpha A-crystallins by the ubiquitin-proteasome pathway. Zhang X; Dudek EJ; Liu B; Ding L; Fernandes AF; Liang JJ; Horwitz J; Taylor A; Shang F Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4200-8. PubMed ID: 17724207 [TBL] [Abstract][Full Text] [Related]
15. Decreased subunit exchange of heat-treated lens alpha A-crystallin. Liang JJ; Fu L Biochem Biophys Res Commun; 2002 Apr; 293(1):7-12. PubMed ID: 12054555 [TBL] [Abstract][Full Text] [Related]
16. Identification of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid binding sequences in alpha-crystallin. Sharma KK; Kumar GS; Murphy AS; Kester K J Biol Chem; 1998 Jun; 273(25):15474-8. PubMed ID: 9624133 [TBL] [Abstract][Full Text] [Related]
17. Photooxidation of the nonenzymatic browning products in calf lens alpha-crystallin. Liang JN Ophthalmic Res; 1991; 23(5):259-64. PubMed ID: 1784457 [TBL] [Abstract][Full Text] [Related]
18. Interaction of kanamycin A and kanamycin B with phospholipids. Yung MW; Green C J Antibiot (Tokyo); 1987 Jun; 40(6):862-7. PubMed ID: 3610836 [TBL] [Abstract][Full Text] [Related]
19. Glutathiolation enhances the degradation of gammaC-crystallin in lens and reticulocyte lysates, partially via the ubiquitin-proteasome pathway. Zetterberg M; Zhang X; Taylor A; Liu B; Liang JJ; Shang F Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3467-73. PubMed ID: 16877417 [TBL] [Abstract][Full Text] [Related]