BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16239731)

  • 1. Crystal growth in X-ray-transparent plastic tubing: an alternative for high-throughput applications.
    Kalinin Y; Thorne R
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1528-32. PubMed ID: 16239731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels.
    Ng JD; Clark PJ; Stevens RC; Kuhn P
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):189-97. PubMed ID: 18219119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and characterization of high-quality protein crystals for X-ray crystallography.
    Moreno A; Yokaichiya F; Dimasi E; Stojanoff V
    Ann N Y Acad Sci; 2009 Apr; 1161():429-36. PubMed ID: 19426336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated analysis of vapor diffusion crystallization drops with an X-ray beam.
    Jacquamet L; Ohana J; Joly J; Borel F; Pirocchi M; Charrault P; Bertoni A; Israel-Gouy P; Carpentier P; Kozielski F; Blot D; Ferrer JL
    Structure; 2004 Jul; 12(7):1219-25. PubMed ID: 15242598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein crystallization in restricted geometry: advancing old ideas for modern times in structural proteomics.
    Ng JD; Stevens RC; Kuhn P
    Methods Mol Biol; 2008; 426():363-76. PubMed ID: 18542876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating crystal-growth mechanisms with and without LB template: protein transfer from LB to crystal.
    Pechkova E; Fiordoro S; Fontani D; Nicolini C
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):809-12. PubMed ID: 15930645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein crystal perfection and its application.
    Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):793-8. PubMed ID: 15930642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ study of nanotemplate-induced growth of lysozyme microcrystals by submicrometer GISAXS.
    Pechkova E; Nicolini C
    J Synchrotron Radiat; 2011 Mar; 18(Pt 2):287-92. PubMed ID: 21335918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scientific approach to the optimization of protein crystallization conditions for microgravity experiments.
    Yoshizaki I; Nakamura H; Fukuyama S; Komatsu H; Yoda S
    Ann N Y Acad Sci; 2004 Nov; 1027():28-47. PubMed ID: 15644343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of lipid for membrane protein crystallization.
    Misquitta Y; Cherezov V; Havas F; Patterson S; Mohan JM; Wells AJ; Hart DJ; Caffrey M
    J Struct Biol; 2004 Nov; 148(2):169-75. PubMed ID: 15477097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing crystallization droplets using birefringence.
    Echalier A; Glazer RL; Fülöp V; Geday MA
    Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):696-702. PubMed ID: 15039558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attempts to rationalize protein crystallization using relative crystallizability.
    Zhu DW; Garneau A; Mazumdar M; Zhou M; Xu GJ; Lin SX
    J Struct Biol; 2006 Jun; 154(3):297-302. PubMed ID: 16651006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures.
    Pflugrath JW
    Methods; 2004 Nov; 34(3):415-23. PubMed ID: 15325658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement on the crystallization of lysozyme in the presence of hydrophilic ionic liquid.
    Chen X; Ji Y; Wang J
    Analyst; 2010 Sep; 135(9):2241-8. PubMed ID: 20614092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures.
    Kmetko J; Husseini NS; Naides M; Kalinin Y; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1030-8. PubMed ID: 16929104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing protein crystal growth through dynamic seeding.
    Zhu DY; Zhu YQ; Xiang Y; Wang DC
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):772-5. PubMed ID: 15930637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microGISAXS and protein nanotemplate crystallization: methods and instrumentation.
    Pechkova E; Roth SV; Burghammer M; Fontani D; Riekel C; Nicolini C
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):713-6. PubMed ID: 16239737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale vapour diffusion for protein crystallization.
    Korczyńska J; Hu TC; Smith DK; Jenkins J; Lewis R; Edwards T; Brzozowski AM
    Acta Crystallogr D Biol Crystallogr; 2007 Sep; 63(Pt 9):1009-15. PubMed ID: 17704570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial evaluations of the reproducibility of vapor-diffusion crystallization.
    Newman J; Xu J; Willis MC
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):826-32. PubMed ID: 17582173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.