These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1623981)

  • 21. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations.
    Adamson J; Burke J; Grobstein P
    J Neurosci; 1984 Oct; 4(10):2635-49. PubMed ID: 6092566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic melatonin and binocular plasticity in Xenopus frogs.
    Udin SB
    Gen Comp Endocrinol; 2005 Jul; 142(3):274-9. PubMed ID: 15935153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for plasticity of intertectal neuronal connections in adult Xenopus.
    Keating MJ
    Philos Trans R Soc Lond B Biol Sci; 1977 Apr; 278(961):277-94. PubMed ID: 19783
    [No Abstract]   [Full Text] [Related]  

  • 24. Superimposed maps of the monocular visual fields in the caudolateral optic tectum in the frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2005; 22(1):101-9. PubMed ID: 15842745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum.
    Brickley SG; Dawes EA; Keating MJ; Grant S
    J Neurosci; 1998 Feb; 18(4):1491-504. PubMed ID: 9454857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasticity in a central nervous pathway in xenopus: anatomical changes in the isthmotectal projection after larval eye rotation.
    Udin SB; Keating MJ
    J Comp Neurol; 1981 Dec; 203(4):575-94. PubMed ID: 7328201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abnormal visual input leads to development of abnormal axon trajectories in frogs.
    Udin SB
    Nature; 1983 Jan; 301(5898):336-8. PubMed ID: 6823306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the nucleus isthmi in Xenopus, II: Branching patterns of contralaterally projecting isthmotectal axons during maturation of binocular maps.
    Udin SB
    Vis Neurosci; 1989; 2(2):153-63. PubMed ID: 2562146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual deprivation and intertectal neuronal connexions in Xenopus laevis.
    Keating MJ; Feldman JD
    Proc R Soc Lond B Biol Sci; 1975 Dec; 191(1105):467-74. PubMed ID: 1778
    [No Abstract]   [Full Text] [Related]  

  • 30. An interhemispheric neural circuit allowing binocular integration in the optic tectum.
    Gebhardt C; Auer TO; Henriques PM; Rajan G; Duroure K; Bianco IH; Del Bene F
    Nat Commun; 2019 Nov; 10(1):5471. PubMed ID: 31784529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Critical Period for Experience-dependent Plasticity in a System of Binocular Visual Connections in Xenopus laevis: Its Extension by Dark-rearing.
    Grant S; Dawes EA; Keating MJ
    Eur J Neurosci; 1992 Oct; 4(1):37-45. PubMed ID: 12106440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity in the ipsilateral visuotectal projection persists after lesions of one nucleus isthmi in Xenopus.
    Udin SB
    Exp Brain Res; 1990; 79(2):338-44. PubMed ID: 2323380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The instructive role of binocular vision in the Xenopus tectum.
    Udin SB
    Biol Cybern; 2007 Dec; 97(5-6):493-503. PubMed ID: 17952453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study.
    Titmus MJ; Tsai HJ; Lima R; Udin SB
    Neuroscience; 1999; 91(2):753-69. PubMed ID: 10366031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Latency and temporal overlap of visually elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period.
    Scherer WJ; Udin SB
    Brain Res Dev Brain Res; 1991 Jan; 58(1):129-32. PubMed ID: 1826641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variability among laboratories in the occurrence of functional modification in the intertectal visual projection of Xenopus laevis [proceedings].
    Horder TJ; Martin KA
    J Physiol; 1977 Oct; 272(1):90P-91P. PubMed ID: 592182
    [No Abstract]   [Full Text] [Related]  

  • 37. Emergence of binocular functional properties in a monocular neural circuit.
    Ramdya P; Engert F
    Nat Neurosci; 2008 Sep; 11(9):1083-90. PubMed ID: 19160507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus.
    Udin SB; Scherer WJ
    Science; 1990 Aug; 249(4969):669-72. PubMed ID: 2166343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in binocular interactions between cortical areas 17 and 18 and superior colliculus of Siamese cats.
    Antonini A; Berlucchi G; Di Stefano M; Marzi CA
    J Comp Neurol; 1981 Aug; 200(4):597-611. PubMed ID: 7263961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis.
    Kennard C
    J Embryol Exp Morphol; 1981 Oct; 65():199-217. PubMed ID: 7334300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.