These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16239875)

  • 1. Microscale surgery on single axons.
    Sretavan DW; Chang W; Hawkes E; Keller C; Kliot M
    Neurosurgery; 2005 Oct; 57(4):635-46; discussion 635-46. PubMed ID: 16239875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling mechanisms of axon growth inhibition.
    Hata K; Kubo T; Yamaguchi A; Yamashita T
    Drug News Perspect; 2006 Nov; 19(9):541-7. PubMed ID: 17220959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtechnology and nanotechnology in nerve repair.
    Chang WC; Kliot M; Sretavan DW
    Neurol Res; 2008 Dec; 30(10):1053-62. PubMed ID: 19079980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-side neurorrhaphy.
    Zhang F; Fischer KA
    Microsurgery; 2002; 22(3):122-7. PubMed ID: 11992500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of transplantable nervous tissue constructs comprised of stretch-grown axons.
    Pfister BJ; Iwata A; Taylor AG; Wolf JA; Meaney DF; Smith DH
    J Neurosci Methods; 2006 May; 153(1):95-103. PubMed ID: 16337007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic neuronal properties control selective targeting of regenerating motoneurons.
    Franz CK; Rutishauser U; Rafuse VF
    Brain; 2008 Jun; 131(Pt 6):1492-505. PubMed ID: 18334536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair.
    Radtke C; Aizer AA; Agulian SK; Lankford KL; Vogt PM; Kocsis JD
    Brain Res; 2009 Feb; 1254():10-7. PubMed ID: 19059220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of axons in the visual system.
    Berry M; Ahmed Z; Lorber B; Douglas M; Logan A
    Restor Neurol Neurosci; 2008; 26(2-3):147-74. PubMed ID: 18820408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo use of a nanoknife for axon microsurgery.
    Chang WC; Hawkes EA; Kliot M; Sretavan DW
    Neurosurgery; 2007 Oct; 61(4):683-91; discussion 691-2. PubMed ID: 17986929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 24: Electrical stimulation for improving nerve regeneration: where do we stand?
    Gordon T; Sulaiman OA; Ladak A
    Int Rev Neurobiol; 2009; 87():433-44. PubMed ID: 19682653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From microsurgery to nanosurgery: how viral vectors may help repair the peripheral nerve.
    Tannemaat MR; Boer GJ; Eggers R; Malessy MJ; Verhaagen J
    Prog Brain Res; 2009; 175():173-86. PubMed ID: 19660656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans.
    Gabel CV; Antoine F; Chuang CF; Samuel AD; Chang C
    Development; 2008 Mar; 135(6):1129-36. PubMed ID: 18296652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model.
    Apel PJ; Garrett JP; Sierpinski P; Ma J; Atala A; Smith TL; Koman LA; Van Dyke ME
    J Hand Surg Am; 2008 Nov; 33(9):1541-7. PubMed ID: 18984336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging strategies to promote improved functional outcome after peripheral nerve injury.
    Abrams M; Widenfalk J
    Restor Neurol Neurosci; 2005; 23(5-6):367-82. PubMed ID: 16477099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chapter 9: Artificial scaffolds for peripheral nerve reconstruction.
    Chiono V; Tonda-Turo C; Ciardelli G
    Int Rev Neurobiol; 2009; 87():173-98. PubMed ID: 19682638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-side nerve coaptation: a qualitative and quantitative assessment in the primate.
    Kelly EJ; Jacoby C; Terenghi G; Mennen U; Ljungberg C; Wiberg M
    J Plast Reconstr Aesthet Surg; 2007; 60(1):1-12. PubMed ID: 17126261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit.
    Kim SM; Lee SK; Lee JH
    J Craniofac Surg; 2007 May; 18(3):475-88. PubMed ID: 17538306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.