These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16240094)

  • 1. A QSPR treatment for the thermal stabilities of second-order NLO chromophore molecules.
    Xu J; Guo B; Chen B; Zhang Q
    J Mol Model; 2005 Dec; 12(1):65-75. PubMed ID: 16240094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors.
    Xu J; Zhang H; Wang L; Liang G; Wang L; Shen X; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):239-47. PubMed ID: 20381412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.
    Xu J; Zhu L; Fang D; Liu L; Bai Z; Wang L; Xu W
    SAR QSAR Environ Res; 2013 Jan; 24(1):47-59. PubMed ID: 23066906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides.
    Prana V; Rotureau P; André D; Fayet G; Adamo C
    Mol Inform; 2017 Oct; 36(10):. PubMed ID: 28402598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR modeling of hyperpolarizabilities.
    Katritzky AR; Pacureanu L; Dobchev D; Karelson M
    J Mol Model; 2007 Sep; 13(9):951-63. PubMed ID: 17569998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the thermal decomposition of organic peroxides by validated QSPR models.
    Prana V; Rotureau P; Fayet G; André D; Hub S; Vicot P; Rao L; Adamo C
    J Hazard Mater; 2014 Jul; 276():216-24. PubMed ID: 24887124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-property relationship for predicting chlorine demand by organic molecules.
    Luilo GB; Cabaniss SE
    Environ Sci Technol; 2010 Apr; 44(7):2503-8. PubMed ID: 20230049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms.
    Fayet G; Rotureau P; Joubert L; Adamo C
    J Mol Model; 2011 Oct; 17(10):2443-53. PubMed ID: 21174136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of boiling points of organic compounds by QSPR tools.
    Dai YM; Zhu ZP; Cao Z; Zhang YF; Zeng JL; Li X
    J Mol Graph Model; 2013 Jul; 44():113-9. PubMed ID: 23792208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules.
    Ojha PK; Roy K
    Food Chem Toxicol; 2018 Feb; 112():551-562. PubMed ID: 28344088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular structure based model for predicting surface tension of organic compounds.
    Delgado EJ; Diaz GA
    SAR QSAR Environ Res; 2006 Oct; 17(5):483-96. PubMed ID: 17050188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR modeling of flash points: an update.
    Katritzky AR; Stoyanova-Slavova IB; Dobchev DA; Karelson M
    J Mol Graph Model; 2007 Sep; 26(2):529-36. PubMed ID: 17532242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.
    Salahinejad M; Le TC; Winkler DA
    J Chem Inf Model; 2013 Jan; 53(1):223-9. PubMed ID: 23215043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.
    Ivanova AA; Ivanov AA; Oliferenko AA; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2005 Jun; 16(3):231-46. PubMed ID: 15804811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software.
    Achary PG
    SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach.
    Modarresi H; Modarress H; Dearden JC
    Chemosphere; 2007 Feb; 66(11):2067-76. PubMed ID: 17113627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR model for bioconcentration factors of nonpolar organic compounds using molecular electronegativity distance vector descriptors.
    Qin LT; Liu SS; Liu HL
    Mol Divers; 2010 Feb; 14(1):67-80. PubMed ID: 19367470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
    Xu J; Wang L; Wang L; Shen X; Xu W
    J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 May; 164(2-3):1242-9. PubMed ID: 18952371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 Sep; 168(2-3):962-9. PubMed ID: 19329246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.