BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16240391)

  • 41. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury.
    Pfeifer K; Vroemen M; Blesch A; Weidner N
    Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.
    Olson HE; Rooney GE; Gross L; Nesbitt JJ; Galvin KE; Knight A; Chen B; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2009 Jul; 15(7):1797-805. PubMed ID: 19191513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new type of biocompatible bridging structure supports axon regrowth after implantation into the lesioned rat optic tract.
    Plant GW; Harvey AR
    Cell Transplant; 2000; 9(6):759-72. PubMed ID: 11202563
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth.
    Kuhlengel KR; Bunge MB; Bunge RP; Burton H
    J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.
    Ribotta MG; Menet V; Privat A
    Acta Neurochir Suppl; 2004; 89():87-92. PubMed ID: 15335106
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury.
    Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ
    J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination.
    Tuszynski MH; Weidner N; McCormack M; Miller I; Powell H; Conner J
    Cell Transplant; 1998; 7(2):187-96. PubMed ID: 9588600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord.
    Takami T; Oudega M; Bates ML; Wood PM; Kleitman N; Bunge MB
    J Neurosci; 2002 Aug; 22(15):6670-81. PubMed ID: 12151546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion.
    Iseda T; Okuda T; Kane-Goldsmith N; Mathew M; Ahmed S; Chang YW; Young W; Grumet M
    J Neurotrauma; 2008 Apr; 25(4):334-49. PubMed ID: 18373483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord.
    Barakat DJ; Gaglani SM; Neravetla SR; Sanchez AR; Andrade CM; Pressman Y; Puzis R; Garg MS; Bunge MB; Pearse DD
    Cell Transplant; 2005; 14(4):225-40. PubMed ID: 15929557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes.
    Menet V; Prieto M; Privat A; Giménez y Ribotta M
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8999-9004. PubMed ID: 12861073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury.
    Desclaux M; Perrin FE; Do-Thi A; Prieto-Cappellini M; Gimenez Y Ribotta M; Mallet J; Privat A
    J Neurosci Res; 2015 Jan; 93(1):43-55. PubMed ID: 25131829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons.
    Prieto M; Chauvet N; Alonso G
    Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury.
    Ban DX; Kong XH; Feng SQ; Ning GZ; Chen JT; Guo SF
    Brain Res; 2009 Feb; 1256():149-61. PubMed ID: 19103176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.