These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16240519)

  • 61. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.
    Díaz-Vivancos P; Clemente-Moreno MJ; Rubio M; Olmos E; García JA; Martínez-Gómez P; Hernández JA
    J Exp Bot; 2008; 59(8):2147-60. PubMed ID: 18535298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Peroxidative reactions attenuate oxygen effect on spectroscopic properties of isolated chloroplasts.
    Garstka M; Jagielski A
    J Photochem Photobiol B; 2001 Nov; 64(1):82-92. PubMed ID: 11705734
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Uptake of ATP analogs by isolated pea chloroplasts and their effect on CO2 fixation and electron transport.
    Robinson SP; Wiskich JT
    Biochim Biophys Acta; 1977 Jul; 461(1):131-40. PubMed ID: 195600
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum).
    Kanervo E; Singh M; Suorsa M; Paakkarinen V; Aro E; Battchikova N; Aro EM
    Plant Cell Physiol; 2008 Mar; 49(3):396-410. PubMed ID: 18263621
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea.
    Bölter B; Soll J; Hill K; Hemmler R; Wagner R
    EMBO J; 1999 Oct; 18(20):5505-16. PubMed ID: 10523295
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of dihydroxyacetone phosphate and 3-phosphoglycerate on O2 evolution and on the levels of ATP, ADP and Pi in isolated intact chloroplasts.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1977 Mar; 459(3):337-46. PubMed ID: 849430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluctuating Light Takes Crop Photosynthesis on a Rollercoaster Ride.
    Kaiser E; Morales A; Harbinson J
    Plant Physiol; 2018 Feb; 176(2):977-989. PubMed ID: 29046421
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photosynthetic control by isolated pea chloroplasts.
    West KR; Wiskich JT
    Biochem J; 1968 Oct; 109(4):527-32. PubMed ID: 5683504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of simulated microgravity on characteristics of photosynthesis in plant seedling.
    Zhao Q; Li J; Liu M
    Space Med Med Eng (Beijing); 2002 Apr; 15(2):79-83. PubMed ID: 12066822
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness.
    Inoue Y; Kobayashi Y; Shibata K; Heber U
    Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Energetic metabolism response in algae and higher plant species from simulation experiments with the clinostat.
    Vasilenko A; Popova AF
    Adv Space Res; 1996; 17(6-7):103-6. PubMed ID: 11538600
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pea chloroplasts under clino-rotation: lipid peroxidation and superoxide dismutase activity.
    Baranenko VV
    Adv Space Res; 2001; 27(5):973-6. PubMed ID: 11596642
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Study of oxygen accumulation in pea chloroplasts with spin labels].
    Kulikov AV; Iudanova EI; Likhtensteĭn GI; Allakhverdiev SI; Klimov VV
    Biofizika; 1988; 33(6):984-9. PubMed ID: 22928219
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence.
    Kummerová M; Krulová J; Zezulka S; Tríska J
    Chemosphere; 2006 Oct; 65(3):489-96. PubMed ID: 16516947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uncoupling of photophosphorylation by ATP: removal of coupling factor.
    Gross EL; Huffman R
    Biochem Biophys Res Commun; 1972 Apr; 47(1):260-6. PubMed ID: 4337426
    [No Abstract]   [Full Text] [Related]  

  • 77. Pathway of starch breakdown in photosynthetic tissues of Pisum sativum.
    Stitt M; Bulpin PV; ap Rees T
    Biochim Biophys Acta; 1978 Nov; 544(1):200-14. PubMed ID: 152656
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of extraction and re-addition of manganese on light reactions of photosystem- II preparations.
    Klimov VV; Allakhverdiev SI; Shuvalov VA; Krasnovsky AA
    FEBS Lett; 1982 Nov; 148(2):307-12. PubMed ID: 22872910
    [No Abstract]   [Full Text] [Related]  

  • 79. Inhibition by triphenyltin chloride of a tightly-bound membrane component involved in photophosphorylation.
    Gould JM
    Eur J Biochem; 1976 Mar; 62(3):567-75. PubMed ID: 131035
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.
    Kume A
    J Plant Res; 2017 May; 130(3):501-514. PubMed ID: 28293810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.