These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16240646)

  • 1. [Biotechnological potential of methylotrophic bacteria: a review of current status and future prospects].
    Trotsenko IuA; Doronina NV; Khmelenina VN
    Prikl Biokhim Mikrobiol; 2005; 41(5):495-503. PubMed ID: 16240646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Aerobic methylobacteria are capable of synthesizing auxins].
    Ivanova EG; Doronina NV; Trotsenko IuA
    Mikrobiologiia; 2001; 70(4):452-8. PubMed ID: 11558269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Moderately haloalkaliphilic aerobic methylobacteria].
    Trotsenko IuA; Doronina NV; Li TsD; Reshetnikov AS
    Mikrobiologiia; 2007; 76(3):293-305. PubMed ID: 17633404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Aerobic methylobacteria as promising objects of modern biotechnology].
    Doronina NV; Toronskava L; Fedorov DN; Trotsenko YA
    Prikl Biokhim Mikrobiol; 2015; 51(2):111-21. PubMed ID: 26027346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biosynthesis of the bioprotectant ectoin by aerobic methylotrophic bacteria from methanol].
    Doronina NV; Ezhov VA; Beschastnyĭ AP; Trotsenko IuA
    Prikl Biokhim Mikrobiol; 2010; 46(2):187-90. PubMed ID: 20391762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Facultative and obligate aerobic methylobacteria synthesize cytokinins].
    Ivanova EG; Doronina NV; Shepeliakovskaia AO; Laman AG; Brovko FA; Trotsenko IuA
    Mikrobiologiia; 2000; 69(6):764-9. PubMed ID: 11195573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].
    Ziakun AM; Firsova IuE; Torgonskaia ML; Doronina NV; Trotsenko IuA
    Prikl Biokhim Mikrobiol; 2007; 43(6):664-9. PubMed ID: 18173108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins].
    Doronina NV; Ivanova EG; Trotsenko IuA
    Mikrobiologiia; 2002; 71(1):130-2. PubMed ID: 11910802
    [No Abstract]   [Full Text] [Related]  

  • 9. Formaldehyde-limited cultivation of a newly isolated methylotrophic bacterium, Methylobacterium sp. MF1: enzymatic analysis related to C1 metabolism.
    Mitsui R; Omori M; Kitazawa H; Tanaka M
    J Biosci Bioeng; 2005 Jan; 99(1):18-22. PubMed ID: 16233748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Aerobic methylotroph bacteria as phytosymbionts].
    Trotsenko IuA; Ivanova EG; Doronina NV
    Mikrobiologiia; 2001; 70(6):725-36. PubMed ID: 11785128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology.
    Kaszycki P; Czechowska K; Petryszak P; Miedzobrodzki J; Pawlik B; Kołoczek H
    Acta Biochim Pol; 2006; 53(3):463-73. PubMed ID: 17019438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ralstonia pickettii in environmental biotechnology: potential and applications.
    Ryan MP; Pembroke JT; Adley CC
    J Appl Microbiol; 2007 Oct; 103(4):754-64. PubMed ID: 17897177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phytosymbiosis of aerobic methylobacteria: New facts and views ].
    Fedorov DN; Doronina NV; Trotsenko IuA
    Mikrobiologiia; 2011; 80(4):435-46. PubMed ID: 22073542
    [No Abstract]   [Full Text] [Related]  

  • 14. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp.
    Dourado MN; Camargo Neves AA; Santos DS; Araújo WL
    Biomed Res Int; 2015; 2015():909016. PubMed ID: 25861650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formaldehyde uptake by Methylobacterium sp. MF1 and Acidomonas methanolica MB 58 with the different formaldehyde assimilation pathways.
    Mitsui R; Kitazawa H; Sato T; Tanaka M
    Environ Sci; 2006; 13(4):185-92. PubMed ID: 17095990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics and transcriptomics insights into the C1 metabolic model of a formaldehyde-degrading strain Methylobacterium sp. XJLW.
    Shao Y; Li J; Wang Y; Yi F; Zhang Y; Cui P; Zhong W
    Mol Omics; 2019 Apr; 15(2):138-149. PubMed ID: 30785446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The biology of aerobic methylobacteria capable of degrading halomethanes].
    Trotsenko IuA; Doronina NV
    Mikrobiologiia; 2003; 72(2):149-60. PubMed ID: 12751236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The current and future applications of microorganism in the bioremediation of cyanide contamination.
    Baxter J; Cummings SP
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):1-17. PubMed ID: 16683094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.
    Yurimoto H; Kato N; Sakai Y
    Chem Rec; 2005; 5(6):367-75. PubMed ID: 16278835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
    Schrader J; Schilling M; Holtmann D; Sell D; Filho MV; Marx A; Vorholt JA
    Trends Biotechnol; 2009 Feb; 27(2):107-15. PubMed ID: 19111927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.