These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16240778)

  • 21. GPI based velocity/force observer design for robot manipulators.
    Gutiérrez-Giles A; Arteaga-Pérez MA
    ISA Trans; 2014 Jul; 53(4):929-38. PubMed ID: 24780160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic modeling of soft continuum manipulators using lie group variational integration.
    Tariverdi A; Venkiteswaran VK; Martinsen ØG; Elle OJ; Tørresen J; Misra S
    PLoS One; 2020; 15(7):e0236121. PubMed ID: 32697813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-scaling of trajectories for point-to-point robotic tasks.
    Moreno-Valenzuela J
    ISA Trans; 2006 Jul; 45(3):407-18. PubMed ID: 16856636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverse kinematics for cooperative mobile manipulators based on self-adaptive differential evolution.
    Hernandez-Barragan J; Lopez-Franco C; Arana-Daniel N; Alanis AY
    PeerJ Comput Sci; 2021; 7():e419. PubMed ID: 33817055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic analysis of a flexible six-DOF parallel mechanism.
    Jing FS; Tan M; Hou ZG; Liang ZZ; Wang YK; Gupta MM; Nikiforuk PN
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):379-89. PubMed ID: 16602597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of some modeling and control issues for a flexible two link manipulator.
    Zhang X; Xu W; Nair SS
    ISA Trans; 2004 Oct; 43(4):509-25. PubMed ID: 15535391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling chaotic robots with kinematical redundancy.
    Li L; Liu Z; Zhang D; Zhang H
    Chaos; 2006 Mar; 16(1):013132. PubMed ID: 16599763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-free motion control of continuum robots based on a zeroing neurodynamic approach.
    Tan N; Yu P; Zhang X; Wang T
    Neural Netw; 2021 Jan; 133():21-31. PubMed ID: 33099245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recurrent neural networks as kinematics estimator and controller for redundant manipulators subject to physical constraints.
    Tan N; Yu P; Liao S; Sun Z
    Neural Netw; 2022 Sep; 153():64-75. PubMed ID: 35700560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application.
    Wang L; Fallavollita P; Zou R; Chen X; Weidert S; Navab N
    IEEE Trans Med Imaging; 2012 May; 31(5):1086-99. PubMed ID: 22293978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.
    Talaei B; Abdollahi F; Talebi HA; Omidi Karkani E
    ISA Trans; 2013 Sep; 52(5):684-91. PubMed ID: 23701897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning inverse kinematics: reduced sampling through decomposition into virtual robots.
    de Angulo VR; Torras C
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1571-7. PubMed ID: 19022727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.
    Cheng L; Hou ZG; Tan M; Zhang WJ
    IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1470-9. PubMed ID: 22531788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating object proper motion using optical flow, kinematics, and depth information.
    Schmüdderich J; Willert V; Eggert J; Rebhan S; Goerick C; Sagerer G; Körner E
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1139-51. PubMed ID: 18632403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.