These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16240816)

  • 1. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: theoretical considerations.
    Andoh M; Nakajima C; Wada H
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1554-65. PubMed ID: 16240816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timing of neural excitation in relation to basilar membrane motion in the basal region of the guinea pig cochlea during the presentation of low-frequency acoustic stimulation.
    Wada H; Takeda A; Kawase T
    Hear Res; 2002 Mar; 165(1-2):165-76. PubMed ID: 12031526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the characteristics of two types of pressure waves in the cochlea: theoretical considerations.
    Andoh M; Wada H
    J Acoust Soc Am; 2004 Jul; 116(1):417-25. PubMed ID: 15296002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea.
    Nuttall AL; Guo M; Ren T
    Hear Res; 1999 May; 131(1-2):39-46. PubMed ID: 10355603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea.
    Zwislocki JJ
    Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The level dependence of response phase: observations from cochlear hair cells.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1998 Jul; 104(1):356-69. PubMed ID: 9670529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically evoked basilar membrane motion.
    Xue S; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3030-41. PubMed ID: 7759643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase opposition between inner and outer hair cells and auditory sound analysis.
    Zwislocki JJ
    Audiology; 1975; 14(5-6):443-55. PubMed ID: 1156250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chinchilla auditory-nerve responses to low-frequency tones.
    Ruggero MA; Rich NC
    J Acoust Soc Am; 1983 Jun; 73(6):2096-2108. PubMed ID: 6875095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus biasing: a comparison between cochlear hair cell and organ of Corti response patterns.
    Cheatham MA; Dallos P
    Hear Res; 1994 May; 75(1-2):103-13. PubMed ID: 8071136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct visualization of organ of corti kinematics in a hemicochlea.
    Hu X; Evans BN; Dallos P
    J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn.
    Nuttall AL; Ren T; de Boer E; Zheng J; Parthasarathi A; Grosh K; Guo M; Dolan D
    Audiol Neurootol; 2002; 7(1):21-6. PubMed ID: 11914521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion.
    Huang S; Olson ES
    J Assoc Res Otolaryngol; 2011 Oct; 12(5):559-75. PubMed ID: 21626227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing middle and inner ear mechanics with novel intracochlear pressure sensors.
    Olson ES
    J Acoust Soc Am; 1998 Jun; 103(6):3445-63. PubMed ID: 9637031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal electrical properties of outer hair cells ensure cochlear amplification.
    Nam JH; Fettiplace R
    PLoS One; 2012; 7(11):e50572. PubMed ID: 23209783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.