BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16241052)

  • 1. [Analysis of multi-component sugar aqueous solution in low-concentration by near-infrared spectrometry].
    Hu B; Chen D; Su QD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1049-52. PubMed ID: 16241052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC; Dixit V; Cho BK; Malik KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M; Walsh K; Lawson P
    Appl Spectrosc; 2003 Feb; 57(2):139-45. PubMed ID: 14610949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pure component selectivity analysis of multivariate calibration models from near-infrared spectra.
    Arnold MA; Small GW; Xiang D; Qui J; Murhammer DW
    Anal Chem; 2004 May; 76(9):2583-90. PubMed ID: 15117201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterospectral two-dimensional correlation spectroscopy of mid-infrared and Fourier self-deconvolved near-infrared spectra of sugar solutions.
    Cocciardi RA; Ismail AA; Wang Y; Sedman J
    J Agric Food Chem; 2006 Sep; 54(18):6475-81. PubMed ID: 16939300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.
    Chen Y; Chen W; Shi Z; Yang Y; Xu K
    Appl Spectrosc; 2009 May; 63(5):544-8. PubMed ID: 19470211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions.
    Chen J; Arnold MA; Small GW
    Anal Chem; 2004 Sep; 76(18):5405-13. PubMed ID: 15362899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.
    Zhang L; Small GW; Arnold MA
    Anal Chem; 2003 Nov; 75(21):5905-15. PubMed ID: 14588032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression.
    Ham FM; Kostanic IN; Cohen GM; Gooch BR
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):475-85. PubMed ID: 9151481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of visible and near-infrared spectroscopy as a tool for assessing fiber fineness during mechanical preparation of dew-retted flax.
    Sharma HS; Reinard N
    Appl Spectrosc; 2004 Dec; 58(12):1431-8. PubMed ID: 15606956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits.
    Liu Y; Ying Y; Yu H; Fu X
    J Agric Food Chem; 2006 Apr; 54(8):2810-5. PubMed ID: 16608193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose and fructose hydrates in aqueous solution by IR spectroscopy.
    Max JJ; Chapados C
    J Phys Chem A; 2007 Apr; 111(14):2679-89. PubMed ID: 17388373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar interaction with metals in aqueous solution: indirect determination from infrared and direct determination from nuclear magnetic resonance spectroscopy.
    Rondeau P; Sers S; Jhurry D; Cadet F
    Appl Spectrosc; 2003 Apr; 57(4):466-72. PubMed ID: 14658645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Water in wood and its near infrared spectroscopic analysis].
    Jiang ZH; Huang AM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1464-8. PubMed ID: 17058947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate analysis of floral nectar using medium infrared.
    Ortiz CM; Castro IP; Portilla LB; Aranda PD; Arizmendi Mdel C
    Phytochem Anal; 2003; 14(5):319-24. PubMed ID: 14516006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.
    Jung Y; Hwang J
    Appl Spectrosc; 2013 Feb; 67(2):171-80. PubMed ID: 23622436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR and UV spectral study of gamma-irradiated white and burned sugar, fructose and glucose.
    Yordanov ND; Georgieva E
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1307-14. PubMed ID: 15134728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simultaneous determination of glucose, fructose and sucrose in aqueous solution by short-wavelength near infrared spectroscopy].
    Rao ZH; Li MZ; Ji HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):633-5. PubMed ID: 16836126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality evaluation of sugar beet (Beta vulgaris) by near-infrared spectroscopy.
    Roggo Y; Duponchel L; Huvenne JP
    J Agric Food Chem; 2004 Mar; 52(5):1055-61. PubMed ID: 14995097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving prediction selectivity for on-line near-infrared monitoring of components in etchant solution by spectral range optimization.
    Namkung H; Lee Y; Chung H
    Anal Chim Acta; 2008 Jan; 606(1):50-6. PubMed ID: 18068770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.