These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16241298)
1. Linear Glauber model. de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066101. PubMed ID: 16241298 [TBL] [Abstract][Full Text] [Related]
2. Existence of an upper critical dimension in the majority voter model. Yang JS; Kim IM; Kwak W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051122. PubMed ID: 18643041 [TBL] [Abstract][Full Text] [Related]
3. Critical behavior of the majority voter model is independent of transition rates. Kwak W; Yang JS; Sohn JI; Kim IM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061110. PubMed ID: 17677223 [TBL] [Abstract][Full Text] [Related]
4. Critical phenomena of the majority voter model in a three-dimensional cubic lattice. Acuña-Lara AL; Sastre F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041123. PubMed ID: 23214545 [TBL] [Abstract][Full Text] [Related]
5. Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model. Crokidakis N; de Oliveira PM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041147. PubMed ID: 22680457 [TBL] [Abstract][Full Text] [Related]
6. Phase transition classes in triplet and quadruplet reaction-diffusion models. Odor G Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056114. PubMed ID: 12786227 [TBL] [Abstract][Full Text] [Related]
7. Critical dynamics of the kinetic Glauber-Ising model on hierarchical lattices. Kong XM; Yang ZR Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016101. PubMed ID: 14995661 [TBL] [Abstract][Full Text] [Related]
8. Fluctuation-dissipation theorem and the linear Glauber model. Hase MO; Salinas SR; Tomé T; de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056117. PubMed ID: 16803008 [TBL] [Abstract][Full Text] [Related]
9. Majority-vote model on hyperbolic lattices. Wu ZX; Holme P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349 [TBL] [Abstract][Full Text] [Related]
10. Critical phenomena on scale-free networks: logarithmic corrections and scaling functions. Palchykov V; von Ferber C; Folk R; Holovatch Y; Kenna R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011145. PubMed ID: 20866603 [TBL] [Abstract][Full Text] [Related]
11. Upper critical dimension of the negative-weight percolation problem. Melchert O; Apolo L; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051108. PubMed ID: 20866186 [TBL] [Abstract][Full Text] [Related]
12. Aging and fluctuation-dissipation ratio in a nonequilibrium q-state lattice model. Hase MO; Tomé T; de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011133. PubMed ID: 20866591 [TBL] [Abstract][Full Text] [Related]
13. Comment on "Critical behavior of a two-species reaction-diffusion problem". Janssen HK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):058101. PubMed ID: 11736152 [TBL] [Abstract][Full Text] [Related]
14. High-temperature series expansions for the q-state Potts model on a hypercubic lattice and critical properties of percolation. Hellmund M; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051113. PubMed ID: 17279883 [TBL] [Abstract][Full Text] [Related]
15. Phase transition of a two-dimensional binary spreading model. Odor G; Marques MC; Santos MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056113. PubMed ID: 12059653 [TBL] [Abstract][Full Text] [Related]
16. Exact solution of a stochastic directed sandpile model. Kloster M; Maslov S; Tang C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026111. PubMed ID: 11308546 [TBL] [Abstract][Full Text] [Related]
17. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition. Korneta W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012 [TBL] [Abstract][Full Text] [Related]
18. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension. Kastening B; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377 [TBL] [Abstract][Full Text] [Related]
19. Schloegl's second model for autocatalysis on hypercubic lattices: Dimension dependence of generic two-phase coexistence. Wang CJ; Liu DJ; Evans JW Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041109. PubMed ID: 22680422 [TBL] [Abstract][Full Text] [Related]
20. Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition around the upper critical dimension. Lübeck S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046150. PubMed ID: 12005969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]