These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16241318)

  • 1. Dielectric breakdown model for composite materials.
    Peruani F; Solovey G; Irurzun IM; Mola EE; Marzocca A; Vicente JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066121. PubMed ID: 16241318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric breakdown model for conductor-loaded and insulator-loaded composite materials.
    Bergero P; Peruani F; Solovey G; Irurzun IM; Vicente JL; Mola EE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016123. PubMed ID: 14995683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal analysis of electrical trees in a cross-linked synthetic resin.
    Irurzun IM; Vicente JL; Cordero MC; Mola EE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016110. PubMed ID: 11304317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.
    Yang X; Hu J; Chen S; He J
    Sci Rep; 2016 Aug; 6():30597. PubMed ID: 27476998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigidity percolation in dispersions with a structured viscoelastic matrix.
    Wilbrink MW; Michels MA; Vellinga WP; Meijer HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031402. PubMed ID: 15903426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(vinylidene fluoride)-La(0.5)Sr(0.5)CoO(3-δ) composites: the influence of LSCO particle size on the structure and dielectric properties.
    Deepa KS; Shaiju P; Sebastian MT; Gowd EB; James J
    Phys Chem Chem Phys; 2014 Aug; 16(32):17008-17. PubMed ID: 25004950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental approach to the percolation of sticky nanotubes.
    Vigolo B; Coulon C; Maugey M; Zakri C; Poulin P
    Science; 2005 Aug; 309(5736):920-3. PubMed ID: 16081733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional properties of cyanate ester composites with SiO2 coated Fe3O4 fillers.
    Sun W; Sun W; Kessler MR; Bowler N; Dennis KW; McCallum RW; Li Q; Tan X
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1636-42. PubMed ID: 23431998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.
    Siddabattuni S; Schuman TP; Dogan F
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1917-27. PubMed ID: 23452250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer dielectric breakdown of hexagonal boron nitride.
    Hattori Y; Taniguchi T; Watanabe K; Nagashio K
    ACS Nano; 2015 Jan; 9(1):916-21. PubMed ID: 25549251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold.
    Tian M; Zhang J; Zhang L; Liu S; Zan X; Nishi T; Ning N
    J Colloid Interface Sci; 2014 Sep; 430():249-56. PubMed ID: 24972295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensions, maximal growth sites, and optimization in the dielectric breakdown model.
    Mathiesen J; Jensen MH; Bakke JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066203. PubMed ID: 18643346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional percolation and cluster structure of the random packing of binary disks.
    He D; Ekere NN; Cai L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061304. PubMed ID: 12188713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster size distribution in percolation theory and fractal Cantor dust.
    Grinchuk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041118. PubMed ID: 17500876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percolation of particles on recursive lattices using a nanoscale approach. I. Theoretical foundation at the atomic level.
    Corsi A; Gujrati PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061121. PubMed ID: 17280052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.
    Simoes R; Silva J; Vaia R; Sencadas V; Costa P; Gomes J; Lanceros-Méndez S
    Nanotechnology; 2009 Jan; 20(3):035703. PubMed ID: 19417305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explosive electric breakdown due to conducting-particle deposition on an insulating substrate.
    Oliveira CL; Araújo NA; Andrade JS; Herrmann HJ
    Phys Rev Lett; 2014 Oct; 113(15):155701. PubMed ID: 25375722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative statistical analysis of dielectric breakdown in zirconia-based self-assembled nanodielectrics.
    Schlitz RA; Ha YG; Marks TJ; Lauhon LJ
    ACS Nano; 2012 May; 6(5):4452-60. PubMed ID: 22540937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond blobs in percolation cluster structure: the distribution of 3-blocks at the percolation threshold.
    Paul G; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056126. PubMed ID: 12059666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified effective dielectric function for metallic granular composites with high percolation threshold.
    Su XR; Zhang ZS; Liu SD; Hao ZH
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1766-70. PubMed ID: 20355571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.