These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16241362)

  • 1. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental probe of a complete 3D photonic band gap.
    Adhikary M; Uppu R; Harteveld CAM; Grishina DA; Vos WL
    Opt Express; 2020 Feb; 28(3):2683-2698. PubMed ID: 32121951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals.
    Hossain MM; Chen G; Jia B; Wang XH; Gu M
    Opt Express; 2010 Apr; 18(9):9048-54. PubMed ID: 20588751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.
    Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M
    Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light Laue diffraction from woodpile photonic crystals.
    Brüser B; Staude I; von Freymann G; Wegener M; Pietsch U
    Appl Opt; 2012 Oct; 51(28):6732-7. PubMed ID: 23033088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.
    Wang B; Chen KP; Leu PW
    Nanotechnology; 2016 Jun; 27(22):225404. PubMed ID: 27109121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the impact of imperfections in high-index-contrast photonic waveguides.
    Skorobogatiy M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046609. PubMed ID: 15600549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete Photonic Band Gaps with Nonfrustrated ABC Bottlebrush Block Polymers.
    Lequieu J; Quah T; Delaney KT; Fredrickson GH
    ACS Macro Lett; 2020 Jul; 9(7):1074-1080. PubMed ID: 35648618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps.
    Wu L; Zhuang F; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026612. PubMed ID: 12636846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.
    Leistikow MD; Mosk AP; Yeganegi E; Huisman SR; Lagendijk A; Vos WL
    Phys Rev Lett; 2011 Nov; 107(19):193903. PubMed ID: 22181609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment.
    Li J; Jia B; Gu M
    Opt Express; 2008 Nov; 16(24):20073-80. PubMed ID: 19030093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.