These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16241416)

  • 1. Fokker-Planck analysis of stochastic coherence in models of an excitable neuron with noise in both fast and slow dynamics.
    Hilborn RC; Erwin RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031112. PubMed ID: 16241416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a stochastic excitable system with slowly adapting feedback.
    Franović I; Yanchuk S; Eydam S; Bačić I; Wolfrum M
    Chaos; 2020 Aug; 30(8):083109. PubMed ID: 32872843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model.
    Gong PL; Xu JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031906. PubMed ID: 11308677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillation regularity in noise-driven excitable systems with multi-time-scale adaptation.
    Nesse WH; Negro CA; Bressloff PC
    Phys Rev Lett; 2008 Aug; 101(8):088101. PubMed ID: 18764664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
    Riegert A; Baba N; Gelfert K; Just W; Kantz H
    Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic noise and two-dimensional maps: quasicycles, quasiperiodicity, and chaos.
    Parra-Rojas C; Challenger JD; Fanelli D; McKane AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032135. PubMed ID: 25314423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method.
    Chizhov AV; Graham LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011910. PubMed ID: 18351879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of coupled noisy excitable systems to weak stimulation.
    Tanabe S; Shimokawa T; Sato S; Pakdaman K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2182-5. PubMed ID: 11970012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of time-delayed feedback control and temporally correlated noise in excitable systems.
    Brandstetter S; Dahlem MA; Schöll E
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):391-421. PubMed ID: 20008408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherence resonance in excitable and oscillatory systems: the essential role of slow and fast dynamics.
    Pradines JR; Osipov GV; Collins JJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6407-10. PubMed ID: 11970555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic dynamo model for subcritical transition.
    Fedotov S; Bashkirtseva I; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial coherence resonance in excitable biochemical media induced by internal noise.
    Gosak M; Marhl M; Perc M
    Biophys Chem; 2007 Jul; 128(2-3):210-4. PubMed ID: 17490805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-mode elimination in stochastic metapopulation models.
    Constable GW; McKane AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032141. PubMed ID: 24730823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-controlled dynamics through the averaging principle for stochastic slow-fast systems.
    Wainrib G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051113. PubMed ID: 22181375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling noise-induced resonance in an excitable system: an alternative approach.
    Nurujjaman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036203. PubMed ID: 20365828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The firing of an excitable neuron in the presence of stochastic trains of strong synaptic inputs.
    Rubin J; Josić K
    Neural Comput; 2007 May; 19(5):1251-94. PubMed ID: 17381266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal signal transmission in one-way coupled excitable system: noise and coupling effects.
    Li Q; Lang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031905. PubMed ID: 17025665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and efficiency of reduced stochastic models for chaotic Hamiltonian systems with time-scale separation.
    Baba N; Just W; Kantz H; Riegert A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066228. PubMed ID: 16906967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay.
    Frank TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011914. PubMed ID: 12241391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.