BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16241429)

  • 1. Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes.
    López-López JM; Moncho-Jordá A; Schmitt A; Hidalgo-Alvarez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031401. PubMed ID: 16241429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-cluster aggregation in binary mixtures.
    AlSunaidi A; Lach-Hab M; Gonzalez AE; Blaisten-Barojas E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):550-6. PubMed ID: 11046296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes.
    López-López JM; Schmitt A; Moncho-Jordá A; Hidalgo-Álvarez R
    Soft Matter; 2006 Nov; 2(12):1025-1042. PubMed ID: 32680205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster-cluster aggregation simulation in a concentrated suspension.
    Kusaka Y; Fukasawa T; Adachi Y
    J Colloid Interface Sci; 2011 Nov; 363(1):34-41. PubMed ID: 21840531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional colloidal aggregation: concentration effects.
    González AE; Martínez-López F; Moncho-Jordá A; Hidalgo-Alvarez R
    J Colloid Interface Sci; 2002 Feb; 246(2):227-34. PubMed ID: 16290406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monomer geometry on the fractal structure of colloidal rod aggregates.
    Mohraz A; Moler DB; Ziff RM; Solomon MJ
    Phys Rev Lett; 2004 Apr; 92(15):155503. PubMed ID: 15169295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates.
    Kim S; Lee KS; Zachariah MR; Lee D
    J Colloid Interface Sci; 2010 Apr; 344(2):353-61. PubMed ID: 20132942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional colloidal aggregation mediated by the range of repulsive interactions.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; González AE; Hidalgo-Alvarez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041408. PubMed ID: 17500895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low fractal dimension cluster-dilute soot aggregates from a premixed flame.
    Chakrabarty RK; Moosmüller H; Arnott WP; Garro MA; Tian G; Slowik JG; Cross ES; Han JH; Davidovits P; Onasch TB; Worsnop DR
    Phys Rev Lett; 2009 Jun; 102(23):235504. PubMed ID: 19658949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and morphology of cluster growth in a model of short-range attractive colloids.
    Khan SJ; Sorensen CM; Chakrabarti A
    J Chem Phys; 2009 Nov; 131(19):194908. PubMed ID: 19929077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.
    Panyukov Y; Yudin I; Drachev V; Dobrov E; Kurganov B
    Biophys Chem; 2007 Apr; 127(1-2):9-18. PubMed ID: 17182167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of DNA-linked nanoparticle aggregates.
    Park SY; Lee JS; Georganopoulou D; Mirkin CA; Schatz GC
    J Phys Chem B; 2006 Jun; 110(25):12673-81. PubMed ID: 16800601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model for the structure of fractal aggregates.
    Lattuada M; Wu H; Morbidelli M
    J Colloid Interface Sci; 2003 Dec; 268(1):106-20. PubMed ID: 14611779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Milk gelation studied with small angle neutron scattering techniques and Monte Carlo simulations.
    van Heijkamp LF; de Schepper IM; Strobl M; Tromp RH; Heringa JR; Bouwman WG
    J Phys Chem A; 2010 Feb; 114(7):2412-26. PubMed ID: 20121284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Light Scattering Study of the Transition Region between Diffusion- and Reaction-Limited Cluster Aggregation.
    Odriozola G; Tirado-Miranda M; Schmitt A; Martínez López F; Callejas-Fernández J; Martínez-García R; Hidalgo-Álvarez R
    J Colloid Interface Sci; 2001 Aug; 240(1):90-96. PubMed ID: 11446790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge heteroaggregation between hard and soft particles.
    Fernández-Barbero A; Vincent B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011509. PubMed ID: 11304268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of heteroaggregation in a suspension of alumina and silica particles: effect of dilution.
    Cerbelaud M; Ferrando R; Videcoq A
    J Chem Phys; 2010 Feb; 132(8):084701. PubMed ID: 20192311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From static micrographs to particle aggregation dynamics in three dimensions.
    Häbel H; Särkkä A; Rudemo M; Hamngren Blomqvist C; Olsson E; Abrahamsson C; Nordin M
    J Microsc; 2016 Apr; 262(1):102-11. PubMed ID: 26584453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates.
    Farias TL; Köylü UÖ; Carvalho MG
    Appl Opt; 1996 Nov; 35(33):6560-7. PubMed ID: 21127680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics in solvent-polarity-induced aggregates from a c60 fullerene-based dyad.
    Gayathri SS; Agarwal AK; Suresh KA; Patnaik A
    Langmuir; 2005 Dec; 21(26):12139-45. PubMed ID: 16342985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.