These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16241488)

  • 1. Erythrocyte rouleau formation under polarized electromagnetic fields.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM; Alvarez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031913. PubMed ID: 16241488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields.
    Muñoz S; Sebastián JL; Sancho M; Miranda JM
    Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of radiofrequency energy stored in the altered shapes: Stomatocyte-echinocyte of human erythrocytes.
    Muñoz S; Sebastián JL; Sancho M; Martínez G
    Bioelectrochemistry; 2010 Feb; 77(2):158-61. PubMed ID: 19665436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical models of rouleau formation and disaggregation.
    Skalak R; Chien S
    Ann N Y Acad Sci; 1983; 416():138-48. PubMed ID: 6587806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid numerical method to compute erythrocyte TMP in low-frequency electric fields.
    Liu C; Sheen D; Huang K
    IEEE Trans Nanobioscience; 2003 Jun; 2(2):104-9. PubMed ID: 15382666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.
    Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM
    Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium shapes of erythrocytes in rouleau formation.
    Derganc J; Bozic B; Svetina S; Zeks B
    Biophys J; 2003 Mar; 84(3):1486-92. PubMed ID: 12609855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physical characteristics of erythrocyte settling in a liquid medium.
    Burton RR; Sluka SJ; Krone RB; Smith AH
    J Biomech; 1969 Oct; 2(4):389-96. PubMed ID: 16335139
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of a homogeneous magnetic field on erythrocyte sedimentation and aggregation.
    Lino M
    Bioelectromagnetics; 1997; 18(3):215-22. PubMed ID: 9096839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of electric field on erythrocyte sedimentation rate. VI--dependence of electric field pattern].
    Xie L; Long M; Liu Y; Wang H; Song G; Wu Z; Wu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):237-42. PubMed ID: 11326840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Two-week magnetic deprivation does not alter rheologic parameters of rat's erythrocytes].
    Katiukhin LN
    Aviakosm Ekolog Med; 2013; 47(5):44-8. PubMed ID: 24490287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are there two functionally distinguished Neu5Gc pools with respect to rouleau formation on the bovine red blood cell?
    Musielak M
    Clin Hemorheol Microcirc; 2004; 30(3-4):435-8. PubMed ID: 15258381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials.
    Muñoz San Martín S; Sebastián JL; Sancho M; Alvarez G
    Bioelectromagnetics; 2006 Oct; 27(7):521-7. PubMed ID: 16715527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation of erythrocytes and aggregates during sedimentation under microgravity.
    Singh M; Middelberg J; Rath HJ
    Microgravity Sci Technol; 1995 Dec; 8(4):256-60. PubMed ID: 11541848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte aggregation: experimental approaches and clinical implications.
    Stoltz JF; Donner M
    Int Angiol; 1987; 6(2):193-201. PubMed ID: 3323355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Deformability and aggregation properties of erythrocytes after exposure of the human body to electromagnetic radiation of various types].
    Katiukhin LN; Ganelina IE; Olesin AI; Karabanova EP
    Fiziol Cheloveka; 1996; 22(6):95-9. PubMed ID: 9053380
    [No Abstract]   [Full Text] [Related]  

  • 18. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure.
    Muñoz San MS; Sebastián JL; Sancho M; Miranda JM
    Phys Med Biol; 2003 Jun; 48(11):1649-59. PubMed ID: 12817943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A particle dynamic model of red blood cell aggregation kinetics.
    Fenech M; Garcia D; Meiselman HJ; Cloutier G
    Ann Biomed Eng; 2009 Nov; 37(11):2299-309. PubMed ID: 19669883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.