These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 16241561)

  • 21. Stabilization of dark solitons in the cubic ginzburg-landau equation.
    Efremidis N; Hizanidis K; Nistazakis HE; Frantzeskakis DJ; Malomed BA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7410-4. PubMed ID: 11102102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability analysis of plane wave solutions of the discrete ginzburg-landau equation.
    Ravoux JF; Le Dizes S ; Le Gal P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):390-3. PubMed ID: 11046277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable droplets and growth laws close to the modulational instability of a domain wall.
    Gomila D; Colet P; Oppo GL; San Miguel M
    Phys Rev Lett; 2001 Nov; 87(19):194101. PubMed ID: 11690411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion-induced instability and chaos in random oscillator networks.
    Nakao H; Mikhailov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036214. PubMed ID: 19392042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves.
    Smith MJ; Sherratt JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046209. PubMed ID: 19905417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bright and peaklike pulse solitary waves and analogy with modulational instability in an extended nonlinear Schrödinger equation.
    Kenmogne F; Yemélé D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043204. PubMed ID: 24229297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-delay autosynchronization control of defect turbulence in the cubic-quintic complex Ginzburg-Landau equation.
    Gonpe Tafo JB; Nana L; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032911. PubMed ID: 24125329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation.
    Barashenkov IV; Cross S; Malomed BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056605. PubMed ID: 14682904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ginzburg-Landau amplitude equation for nonlinear nonlocal models.
    Garlaschi S; Gupta D; Maritan A; Azaele S
    Phys Rev E; 2021 Feb; 103(2-1):022210. PubMed ID: 33736032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach.
    Descalzi O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046210. PubMed ID: 16383515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback.
    Paulau PV; Gomila D; Colet P; Malomed BA; Firth WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036213. PubMed ID: 22060481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay between modulational instability and self-trapping of wavepackets in nonlinear discrete lattices.
    Chaves Filho VL; Lima RP; Lyra ML
    Chaos; 2015 Jun; 25(6):063101. PubMed ID: 26117095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control.
    Kanevsky Y; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066305. PubMed ID: 18233915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moving and colliding pulses in the subcritical Ginzburg-Landau model with a standing-wave drive.
    Baizakov BB; Filatrella G; Malomed BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036604. PubMed ID: 17500806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system.
    Jiang M; Wang X; Ouyang Q; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056202. PubMed ID: 15244899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soliton turbulence in the complex Ginzburg-Landau equation.
    Sakaguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):017205. PubMed ID: 17677602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulational instability and breathing motion in the two-dimensional nonlinear Schrödinger equation with a one-dimensional harmonic potential.
    Sakaguchi H; Kageyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053203. PubMed ID: 24329371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.
    Kengne E; Lakhssassi A; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062915. PubMed ID: 26172780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of hexagonal patterns in Bénard-Marangoni convection.
    Echebarria B; Pérez-García C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066307. PubMed ID: 11415227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonant excitation and nonlinear evolution of waves in the equatorial waveguide in the presence of the mean current.
    Reznik G; Zeitlin V
    Phys Rev Lett; 2007 Aug; 99(6):064501. PubMed ID: 17930833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.