These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16241608)

  • 1. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals.
    Blomgren P; Gasner S; Palacios A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating the Kuramoto-Sivashinsky equation in polar coordinates: application of the distributed approximating functional approach.
    Zhang DS; Wei GW; Kouri DJ; Hoffman DK; Gorman M; Palacios A; Gunaratne GH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3353-60. PubMed ID: 11970149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crank-Nicolson method for solving uncertain heat equation.
    Liu J; Hao Y
    Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann schemes for the nonlinear Schrödinger equation.
    Zhong L; Feng S; Dong P; Gao S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Convergence Analysis of the Frank-Kamenetskii Equation.
    Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect.
    Novitski R; Scheuer J; Steinberg BZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023303. PubMed ID: 23496635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Second-Order Crank-Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction.
    Wu C; Feng X; Qian L
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.
    Leonardi E; Angeli C
    J Phys Chem B; 2010 Jan; 114(1):151-64. PubMed ID: 20000727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation.
    Wells D; Quiney H
    Sci Rep; 2019 Jan; 9(1):782. PubMed ID: 30692569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
    Mang A; Biros G
    SIAM J Sci Comput; 2017; 39(6):B1064-B1101. PubMed ID: 29255342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation.
    Galenko PK; Gomez H; Kropotin NV; Elder KR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013310. PubMed ID: 23944586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local one-dimensional approximation for fast simulation of Z-scan measurements with an arbitrary beam.
    Zang WP; Tian JG; Liu ZB; Zhou WY; Song F; Zhang CP
    Appl Opt; 2004 Aug; 43(22):4408-14. PubMed ID: 15298415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions.
    Zhou Y; Luo Z; Teng F
    J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational approximation and the use of collective coordinates.
    Dawes JH; Susanto H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063202. PubMed ID: 23848797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization.
    Shao H; Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056705. PubMed ID: 19518591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact integration factor methods for complex domains and adaptive mesh refinement.
    Liu X; Nie Q
    J Comput Phys; 2010 Aug; 229(16):5692-5706. PubMed ID: 20543883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.